Description of Table S1. List and characteristics of the detected pseudogenes in the 8 studied yeast genomes. Description of Table S2. List of gene families (or singletons) with detected pseudogenes. Table S3. Lost functions among the eight studied species. A list of the pseudogenes with no paralog in the different genomes

Table S1. List and characteristics of the detected pseudogenes in the 8 studied yeast genomes.

The table is in Additional file 2

Pseudogenes are named according to their position along the chromosome (from left to right end, see text for nomenclature). Chromosomes, coordinates and orientation of pseudogenes are given in columns 2-5. The closest functional homolog among the 8 species studied (bestmatch) and classification of its product into protein families are given in column 6-7. Gene nomenclature refers to (16), family classification refers to (58).

Columns 8-10: characteristics of pseudogene by comparison to its bestmatch.

R.L: relative length of the pseudogene with respect to its bestmatch length.

D.A: amino acid divergence between the pseudogene and its bestmatch (see METHODS).

D.N: nucleotide divergence between the pseudogene and its bestmatch (see METHODS).

Columns 11-12:

Stop: number of in-frame stop codons according to FASTY

FS: number of frameshifts according to FASTY

Column 13: pseudogene(s) of the same family, with the same pattern of disabling mutations. Pseudogenes with an asterisk are part of a larger duplicated region including other genes.

Note that a few pseudogenes were already mentioned in the original annotation of *C. glabrata*, *D. hansenii*, *K. lactis* and *Y. lipolytica* (13), and the result of the present work served for the recent updates of their annotation, as well as for the annotation of the newly sequenced genomes of *Z. rouxii*, *S. kluyveri* and *K. thermotolerans* (24).

Table S2. List of gene families (or singletons) with detected pseudogenes.

The table is in Additional file 2

The phyletic patterns of each family indicate the presence (s, c, r, l, t, k, d, y) or absence (-) of the pseudogene members (column 2) and of the active gene members (column 4) in each species. The one-letter abreviations are as follows : 's' for *S. cerevisiae*, 'c' for *C. glabrata*, 'r' for *Z. rouxii*, 'l' for *K. lactis*, 't' for *K. thermotolerans*, 'k' for *S. kluyveri*, 'd' for *D. hansenii* and 'y' for *Y. lipolytica*.

The general annotation of the *S. cerevisiae* gene members is given in column 7, according to the annotation of the gene indicated in column 6. The number of pseudogenes is not correlated to the number of their functional paralogs in the same family (from 1 to at least 20 active paralogs can be found per pseudogene). In addition, 61 pseudogenes have been identified by similarity with genes from another species, because they have no paralog and are unique in their genome.

Table S3. Lost functions among the eight studied species.

Name^a Functional homolog Annotated function in S. cerevisiae or annotation by similarity

_	SACE0Fp3	DEHA2D01122g	weakly similar to Q899U5 Clostridium tetani Threonine dehydratase
	SACE0Fp2	<i>DEHA2E07282g</i>	similar to Q9I565 Pseudomonas aeruginosa PA0880
			Probable ring-cleaving dioxygenase
	SACE0Np2	DEHA2E07282g	similar to Q9I565 Pseudomonas aeruginosa PA0880
			Probable ring-cleaving dioxygenase
	CAGL0Lp4	YCR020W-B HTL1	Component of the RSC chromatin remodeling complex
	CAGL0Lp5	YOR043W WHI2	Protein required with binding partner Psr1p for full activation
			of the general stress response
	CAGL0Mp1	YJR089W BIR1	Essential chromosomal passenger protein involved in coordinating
			cell cycle events
	ZYRO0Bp8	YDR277C	Protein involved in control of glucose-regulated gene expression
	ZYRO0Bp7	YOR043W WHI2	Protein required with binding partner PsrIp for full activation
			of the general stress response
	ZYRO0Dp8	YHR084W STE12	Transcription factor, activates genes involved in mating or

		pseudohyphal/invasive growth pathways
ZYRO0Gp9	YJR021C REC107	Protein involved in early stages of meiotic recombination
ZYRO0Gp11	YJR089W BIR1	Essential chromosomal passenger protein involved in coordinating cell cycle events
KLTH0Ap7	YCR054C CTR86	Essential protein of unknown function
KLTH0Bp3	YJR021C REC107	Protein involved in early stages of meiotic recombination
KLTH0Cp5	YGL256W ADH4	Alcohol dehydrogenase isoenzyme type IV
KLTH0Dp6	YDL185W TFP1	Vacuolar ATPase V1 domain subunit A containing the catalytic nucleotide binding sites
KLTH0Ep7	YGL256W ADH4	Alcohol dehydrogenase isoenzyme type IV
KLTH0Ep9	YNR064C	Epoxide hydrolase member of the alpha/beta hydrolase fold family
KLTH0Fp3	YLL057C JLP1	Fe(II)-dependent sulfonate/alpha-ketoglutarate dioxygenase involved in sulfonate catabolism

KLTH0Gp3 YDR285WZIP1 Transverse filament protein of the synaptonemal complex

KLTH0Hp8 YALI0C10311g similar to uniprot|P50505 *Debaryomyces occidentalis* HAK1 high affinity potassium transporter

- SAKL0Dp4 YBR272C HSM3 Proteasome-interacting protein regulatory particle (RP)
- SAKL0Ep17 YDL103C QR11 Essential UDP-N-acetylglucosamine pyrophosphorylase
- *SAKL0Hp7 YDL200C MGT1* DNA repair methyltransferase (6-O-methylguanine-DNA methylase)
- SAKL0Gp7 YDR285W ZIP1 Transverse filament protein of the synaptonemal complex
- *SAKL0Cp4 YDR499WLCD1* Essential protein required for the DNA integrity checkpoint pathways
- *SAKL0Bp7 YFL023W BUD27* Protein involved in bud-site selection nutrient signaling and gene expression
- SAKL0Cp9 YJL168C SET2 Histone methyltransferase with a role in transcriptional elongation
- SAKL0Gp13 YJR021C REC107 Protein involved in early stages of meiotic recombination
- SAKL0Dp8 YML051W GAL80 Transcriptional regulator involved in the repression of GAL genes in the absence of galactose
- *SAKL0Bp12 YNR064C* Epoxide hydrolase member of the alpha/beta hydrolase fold family

DEHA2Bp9	YDR280W RRP45	Protein involved in rRNA processing
DEHA2Dp22	YJL085W EXO70	Essential 70kDa subunit of the exocyst complex
DEHA2Ep24	YGL040C HEM2	Delta-aminolevulinate dehydratase
DEHA2Ep15	YDR127W ARO1	Pentafunctional arom protein catalyzes steps 2 through 6 in the biosynthesis of chorismate
DEHA2Ep13	YALI0E11473g	similar to uniprot P50505 <i>Debaryomyces occidentalis</i> HAK1 high affinity potassium transporter
DEHA2Gp11	YOL081W IRA2	GTPase-activating protein that negatively regulates RAS

YOR188W MSB1	Protein involved in positive regulation of both 1,3-beta-glucan synthesis
	and the Pkc1p-MAPK pathway
YOR274W MOD5	Delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase
	YOR188W MSB1 YOR274W MOD5

YALI0Dp8 YHR201C PPX1 Exopolyphosphatase

YALI0Fp32 YKL038W RGT1 Glucose-responsive transcription factor

YALI0Fp31 YGR112W SHY1 Mitochondrial inner membrane protein required for normal respiration

YALI0Fp5 YGL190C CDC55 Non-essential regulatory subunit B of protein phosphatase 2A

^a. pseudogenes without functional paralog (pseudogenes similar to genes with uncharacterized function are not listed).