Datasets archived at CGD


CGD collects only published and freely available datasets.
Contact CGD Curators if you want to contribute your results

Help


Browse the archive directory here

2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

Note: the strains used in some of the experiments listed below may have chromosomal abnormalities such as aneuploidy, which introduces chromosome-specific bias into microarray and other results. For more details, see Arbour et al. (2009).
2013:
  • Carlisle PL, Kadosh D, et al. (2013) A genome-wide transcriptional analysis of morphology determination in Candida albicans. Mol Biol Cell 24(3):246-60.
       
  • Connolly LA, et al. (2013) The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis. Mol Microbiol. 2013 Jul 29.
         
  • Desai JV, et al. (2013) Regulatory Role of Glycerol in Candida albicans Biofilm Formation. MBio 4(2).
       
  • Fukuda Y, et al. (2013) Transcriptional Profiling of Candida glabrata during Phagocytosis by Neutrophils and in the Infected Mouse Spleen. Infect Immun 81(4):1325-33.
       
  • Grumaz C, et al. (2013) Species and condition specific adaptation of the transcriptional landscapes in Candida albicans and Candida dubliniensis. BMC Genomics 14:212.
         
  • Heilmann CJ, et al. (2013) Surface Stress Induces a Conserved Cell Wall Stress Response in the Pathogenic Fungus Candida albicans. Eukaryot Cell 12(2):254-64.
       
  • Hernday AD, et al. (2013) Structure of the Transcriptional Network Controlling White-Opaque Switching in Candida albicans. Mol Microbiol. 2013 Jul 16.
           
  • Hill JA, et al. (2013) Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLoS Genet 9(4):e1003390.
       
  • Hsu PC, et al. (2013) Diverse Hap43-independent functions of the Candida albicans CCAAT-binding Complex. Eukaryot Cell. 2013 Mar 29.
       
  • Inglis DO, et al. (2013) Improved Gene Ontology Annotation for Biofilm Formation, Filamentous Growth, and Phenotypic Switching in Candida albicans. Eukaryot Cell 12(1):101-8.
       
  • Lin CH, et al. (2013) Genetic Control of Conventional and Pheromone-Stimulated Biofilm Formation in Candida albicans. PLoS Pathog 9(4):e1003305.
       
  • Lohse MB, et al. (2013) Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proc Natl Acad Sci U S A 110(19):7660-5.
       
  • Martin R, et al. (2013) A Core Filamentation Response Network in Candida albicans Is Restricted to Eight Genes. PLoS One 8(3):e58613.
       
  • Mavrianos J, et al. (2013) Mitochondrial Two-Component Signaling Systems in Candida albicans. Eukaryot Cell. 2013 Apr 12. [Epub ahead of print].
         
  • Miyazaki T, et al. (2013) Dissection of Ire1 Functions Reveals Stress Response Mechanisms Uniquely Evolved in Candida glabrata. PLoS Pathog 9(1):e1003160.
       
  • Noble JA, et al. (2013) STB5 Is a Negative Regulator of Azole Resistance in Candida glabrata. Antimicrob Agents Chemother 57(2):959-67.
       
  • Palige K, et al. (2013) Global Transcriptome Sequencing Identifies Chlamydospore Specific Markers in Candida albicans and Candida dubliniensis. PLoS One 8(4):e61940.
       
  • Pande K, et al. (2013) Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013 Jul 28.
       
  • Perez JC, et al. (2013) Candida albicans Commensalism and Pathogenicity Are Intertwined Traits Directed by a Tightly Knit Transcriptional Regulatory Circuit. PLoS Biol 11(3):e1001510.
       
  • Pierce JV, et al. (2013) Normal Adaptation of Candida albicans to the Murine Gastrointestinal Tract Requires Efg1p-Dependent Regulation of Metabolic and Host Defense Genes. Eukaryot Cell 12(1):37-49.
       
  • Raman SB, et al. (2013) A Competitive Infection Model of Hematogenously Disseminated Candidiasis in Mice Redefines the Role of Candida albicans IRS4 in Pathogenesis. Infect Immun 81(5):1430-8.
         
  • Rao KH, et al. (2013) N-Acetylglucosamine Kinase, HXK1 Is Involved in Morphogenetic Transition and Metabolic Gene Expression in Candida albicans. PLoS One 8(1):e53638.
       
  • Rohm M, et al. (2013) A family of secreted pathogenesis-related proteins in Candida albicans. Mol Microbiol 87(1):132-51.
       
  • Rossignol T, et al. (2013) Antifungal Activity of Fused Mannich Ketones Triggers an Oxidative Stress Response and Is Cap1-Dependent in Candida albicans. PLoS One 8(4):e62142.
       
  • Si H, et al. (2013) Candida albicans White and Opaque Cells Undergo Distinct Programs of Filamentous Growth. PLoS Pathog 9(3):e1003210.
       
  • Silva LV, et al. (2013) Milbemycins: more than efflux inhibitors for fungal pathogens. Antimicrob Agents Chemother 57(2):873-86.
       
  • Tekaia F, et al. (2013) Detection and Characterization of Megasatellites in Orthologous and Non-orthologous Genes of 21 Fungal Genomes. Eukaryot Cell. 2013 Mar 29.
       
  • Thakur J, et al. (2013) Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res 23(4):638-52.
       
  • Xie J, et al. (2013) White-Opaque Switching in Natural MTLa/alpha Isolates of Candida albicans: Evolutionary Implications for Roles in Host Adaptation, Pathogenesis, and Sex. PLoS Biol 11(3):e1001525.
         


2012:
  • Buschart A, et al. (2012) The fungicide fludioxonil antagonizes fluconazole activity in the human fungal pathogen Candida albicans. J Med Microbiol 61(Pt 12):1696-703.
         
  • Cain CW, et al. (2012) A conserved transcriptional regulator governs fungal morphology in widely diverged species. Genetics 190(2):511-21.
       
  • Chen YL, et al. (2012) Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in Candida glabrata. G3 (Bethesda) 2(6):675-91.
       
  • Chen YT, et al. (2012) Rhb1 Regulates the Expression of Secreted Aspartic Protease 2 through the TOR Signaling Pathway in Candida albicans. Eukaryot Cell 11(2):168-82.
       
  • Diezmann S, et al. (2012) Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry. PLoS Genet 8(3):e1002562.
       
  • Fanning S, et al. (2012) Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1. Mol Microbiol 86(2):284-302.
         
  • Flowers SA, et al. (2012) Gain-of-Function Mutations in UPC2 Are a Frequent Cause of ERG11 Upregulation in Azole-Resistant Clinical Isolates of Candida albicans. Eukaryot Cell 11(10):1289-99.
       
  • Hnisz D, et al. (2012) A Histone Deacetylase Adjusts Transcription Kinetics at Coding Sequences during Candida albicans Morphogenesis. PLoS Genet 8(12):e1003118.
         
  • Nobile CJ, et al. (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148(1-2):126-38.
       
  • Ofir A, et al. (2012) Role of a Candida albicans Nrm1/Whi5 homolog in cell cycle gene expression and DNA replication stress response. Mol Microbiol. 2012 Mar 30. doi: 10.1111/j.1365-2958.2012.08056.x. [Epub ahead of print].
       
  • Rai MN, et al. 2012 Functional Genomic Analysis of Candida glabrata-Macrophage Interaction: Role of Chromatin Remodeling in Virulence. PLoS Pathog 8(8):e1002863.
       
  • Shapiro RS, et al. (2012) Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by High Temperature or Hsp90 Compromise. Curr Biol 22(6):461-470.
       
  • Srinivasa K, et al. (2012) A MAP kinase pathway is implicated in the pseudohyphal induction by hydrogen peroxide in Candica albicans. Mol Cells 33(2):183-93.
       
  • Tebbets B, et al. (2012) Identification and Characterization of Antifungal Compounds Using a Saccharomyces cerevisiae Reporter Bioassay. PLoS One 7(5):e36021.
       
  • Tierney L, et al. (2012) An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Front Microbiol 3:85.
       
  • Uwamahoro N, et al. (2012) The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression. PLoS Genet 8(4):e1002613.
       
  • Vandeputte P, et al. (2012) Identification and Functional Characterization of Rca1, a Transcription Factor Involved in both Antifungal Susceptibility and Host Response in Candida albicans. Eukaryot Cell 11(7):916-31.
       
  • Vialas V, et al. (2012) Cell surface shaving of Candida albicans biofilms, hyphae and yeast form cells. Proteomics. 2012 Jun 11.
       
  • Xu T, et al. (2012) A potent plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis. Antimicrob Agents Chemother 56(6):2894-907.
         
  • Zelante T, et al. (2012) Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun. 2012 Feb 21;3:683.
       


2011:
  • Abbey, et al. (2011) High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains. G3 (Bethesda). Dec;1(7):523-30.
       
  • Askew C, et al. (2011) The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion. Mol Microbiol 79(4):940-53.
       
  • Bairwa G, et al. (2011) A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Mol Microbiol 79(4):900-13.
       
  • Bonhomme J, et al. (2011) Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol Microbiol 80(4):995-1013.
       
  • Brena S, et al. (2011) Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob Agents Chemother 55(7):3156-63.
       
  • Burger-Kentischer A, et al. (2011) A screening assay based on host-pathogen interaction models identifies a set of novel antifungal benzimidazole derivatives. Antimicrob Agents Chemother 55(10):4789-801.
       
  • Caudle KE, et al. (2011) Genomewide Expression Profile Analysis of the Candida glabrata Pdr1 Regulon. Eukaryot Cell 10(3):373-83.
       
  • Chaudhuri R, et al. (2011) FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 12(1):192.
       
  • Chen C, et al. (2011) An Iron Homeostasis Regulatory Circuit with Reciprocal Roles in Candida albicans Commensalism and Pathogenesis. Cell Host Microbe 10(2):118-35.
       
  • Dagley MJ, et al. (2011) Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol Microbiol 79(4):968-89.
       
  • Ding C, et al. (2011) Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans. PLoS One 6(12):e28151.
         
  • Edskes HK, et al. (2011) Prion-forming ability of Ure2 of yeasts is not evolutionarily conserved. Genetics 188(1):81-90.
       
  • Ferrari S, et al. (2011) Loss of Mitochondrial Functions Associated with Azole Resistance in Candida glabrata Results in Enhanced Virulence in Mice. Antimicrob Agents Chemother 55(5):1852-60.
       
  • Ferrari S, et al. (2011a) Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 6(3):e17589.
         
  • Guida A, et al. (2011) Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genomics 12:628.
       
  • Hameed S, et al. (2011) Calcineurin Signaling and Membrane Lipid Homeostasis Regulates Iron Mediated MultiDrug Resistance Mechanisms in Candida albicans. PLoS One 6(4):e18684.
       
  • Hussein B, et al. (2011) G1/S Transcription Factor Orthologues Swi4p and Swi6p Are Important but Not Essential for Cell Proliferation and Influence Hyphal Development in the Fungal Pathogen Candida albicans. Eukaryot Cell 10(3):384-97.
       
  • Lassak T, et al. (2011) Target specificity of the Candida albicans Efg1 regulator. Mol Microbiol 82(3):602-18.
       
  • Leach MD, et al. (2011) Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol Biol Cell 22(5):687-702.
       
  • Liang R, et al. (2011) 2-Amino-nonyl-6-methoxyl-tetralin muriate activity against Candida albicans augments endogenous reactive oxygen species production - a microarray analysis study. FEBS J 278(7):1075-85. Mol Biol Cell 22(5):687-702.
       
  • Mishra PK, et al. (2011) DNA methylation regulates phenotype-dependent transcriptional activity in Candida albicans Proc Natl Acad Sci U S A 108(29):11965-70.
       
  • Monteoliva L, et al. (2011) Quantitative proteome and acidic subproteome profiling of Candida albicans yeast-to-hypha transition. J Proteome Res. Feb 4;10(2):502-17. Epub 2010 Dec 31.
       
  • Roetzer A, et al. (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585(2):319-27.
       
  • Schubert S, et al. (2011) Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrob Agents Chemother 55(5):2212-23.
       
  • Sen M, et al. (2011) UDP-glucose 4, 6-dehydratase Activity Plays an Important Role in Maintaining Cell Wall Integrity and Virulence of Candida albicans. PLoS Pathog 7(11):e1002384.
       
  • Shareck J,, et al. (2011) Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Eukaryot Cell 10(4):565-77.
       
  • Silva AP, et al. (2011) Transcriptional profiling of azole-resistant Candida parapsilosis strains. Antimicrob Agents Chemother 55(7):3546-56.
         
  • Singh RP, et al. (2011) Cap2-HAP Complex Is a Critical Transcriptional Regulator That Has Dual but Contrasting Roles in Regulation of Iron Homeostasis in Candida albicans. J Biol Chem 286(28):25154-70.
       
  • Sosinska GJ, et al. (2011) Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH. Microbiology 157(Pt 1):136-46.
       
  • Stichternoth C, et al. (2011) Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot Cell 10(4):502-11.
       
  • Tsankov A, et al. (2011) Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res 21(11):1851-62.
       
  • Tsui K, et al. (2011) Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns. Mol Cell Biol 31(21):4348-55.
       
  • Wachtler B, et al. (2011) From Attachment to Damage: Defined Genes of Candida albicans Mediate Adhesion, Invasion and Damage during Interaction with Oral Epithelial Cells. PLoS One 6(2):e17046.
       


2010:
  • Alonso-Monge R, et al. (2010) The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet Biol. 2010 Jul;47(7):587-601. Epub 2010 Apr 11.
       
  • Becker JM, et al. (2010) Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22044-9. Epub 2010 Dec 6.
       
  • Bruno VM, et al. (2010) Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 2010 Oct;20(10):1451-8. Epub 2010 Sep 1.
       
  • Epp E, et al. (2010) Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Mol Microbiol 75(5):1182-98.
       
  • Gunasekera A, et al. (2010) Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z. Eukaryot Cell. 2010 Oct;9(10):1476-83. Epub 2010 Jul 30.
       
  • Koren A, et al. (2010) Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet 6(8):e1001068.
         
  • Kravets A, et al. (2010) Widespread occurrence of dosage compensation in Candida albicans. PLoS One 5(6):e10856.
         
  • Kuo D, et al. (2010) Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering. Genome Biol 11(7):R77.
         
  • Kuo D, et al. (2010a) Coevolution within a transcriptional network by compensatory trans and cis mutations. Genome Res 20(12):1672-8.
       
  • Lafontaine I and Dujon B. (2010) Origin and fate of pseudogenes in Hemiascomycetes: a comparative analysis. BMC Genomics 11:260.
       
  • Lohse MB and Johnson AD. (2010) Temporal anatomy of an epigenetic switch in cell programming: the white-opaque transition of C. albicans. Mol Microbiol. 2010 Oct;78(2):331-43. doi: 10.1111/j.1365-2958.2010.07331.x. Epub 2010 Aug 29.
       
  • Lopes da Rosa J, et al. (2010) Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1594-9. Epub 2010 Jan 4.
       
  • Mochon AB, et al. (2010) Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog. 2010 Mar 26;6(3):e1000827.
       
  • O'Connor L, et al. (2010) Differential filamentation of Candida albicans and Candida dubliniensis is governed by nutrient regulation of UME6 expression. Eukaryot Cell. 2010 Sep;9(9):1383-97. Epub 2010 Jul 16.
       
  • Oh J, et al. (2010) Gene Annotation and Drug Target Discovery in Candida albicans with a Tagged Transposon Mutant Collection. PLoS Pathog. 2010 Oct 7;6(10). pii: e1001140.
       
  • Sellam A, et al. (2010) Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biol. 2010;11(7):R71. Epub 2010 Jul 9.
       
  • Selmecki A, et al. (2010) Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryot Cell 9(7):991-1008.
       
  • Spiering MJ, et al. (2010) Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Eukaryot Cell 9(2):251-65.
         
  • Synnott JM, et al. (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell 9(11):1734-46.
       
  • Tsai HF, et al. (2010) Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates. Antimicrob Agents Chemother 54(8):3308-17.
       
  • Tsankov AM, et al. (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8(7):e1000414.
         
  • Tuch BB, et al. (2010) The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet. 2010 Aug 19;6(8):e1001070.
       
  • Walker CA, et al. (2010) Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot Cell 9(9):1329-42.
       


2009:
  • Bastidas RJ, et al. (2009) The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 5(2):e1000294.
         
  • Beltrao P, et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol. 2009 Jun 16;7(6):e1000134. Epub 2009 Jun 23.
       
  • Cote P, et al. (2009) Transcriptional Analysis of the Candida albicans Cell Cycle. Mol Biol Cell. 2009 Jul;20(14):3363-73. Epub 2009 May 28.
       
  • Drinnenberg IA, et al. (2009) RNAi in budding yeast. Science 326(5952):544-50.
         
  • Enjalbert B, et al. (2009) Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Mol Microbiol. 2009 Apr;72(1):216-28. Epub 2009 Feb 23.
       
  • Hauser NC, et al. (2009) From experimental setup to data analysis in transcriptomics: copper metabolism in the human pathogen Candida albicans. J Biophotonics 2(4):262-8.
       
  • Jackson AP, et al. (2009) Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 19(12):2231-44.
       
  • Ma B, et al. (2009) High-affinity transporters for NAD+ precursors in Candida glabrata are regulated by Hst1 and induced in response to niacin limitation. Mol Cell Biol 29(15):4067-79.
       
  • MacCallum DM, et al. (2009) Property differences among the four major Candida albicans strain clades. Eukaryot Cell. 2009 Mar;8(3):373-87. Epub 2009 Jan 16.
       
  • Nobile CJ, et al. (2009) Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7(6):e1000133. Epub 2009 Jun 16.
       
  • Park H, et al. (2009) Transcriptional responses of Candida albicans to epithelial and endothelial cells. Eukaryot Cell 8(10):1498-510.
         
  • Rodaki A, et al. (2009) Glucose Promotes Stress Resistance in the Fungal Pathogen, Candida albicans. Mol Biol Cell. 2009 Nov;20(22):4845-55. Epub 2009 Sep 16
       
  • Rossignol T, et al. (2009) Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot Cell 8(4):550-9.
         
  • Sellam A, et al. (2009) A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol 9:25.
       
  • Sellam A, et al. (2009) Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans. Eukaryot Cell. 2009 Aug;8(8):1174-83. Epub 2009 Jun 19.
       
  • Selmecki AM, et al. (2009) Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 5(10):e1000705.
         
  • Trunk K, et al. (2009) Depletion of the Cullin Cdc53p Induces Morphogenetic Changes in Candida albicans. Eukaryot Cell. 2009 May;8(5):756-67. Epub 2009 Mar 6.
       
  • Znaidi S, et al. (2009) Identification of the Candida albicans Cap1p regulon. Eukaryot Cell. 2009 Jun;8(6):806-20. Epub 2009 Apr 24.
         


2008:
  • Agarwal AK, et al. (2008) Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. Eukaryot Cell 7(2):387-400.
       
  • Almeida, RS et al. (2008) The Hyphal-Associated Adhesin and Invasin Als3 of Candida albicans Mediates Iron Acquisition from Host Ferritin. PLoS Pathog 4(11):e1000217.
       
  • Alvarez FJ, et al. (2008) The Sur7 protein regulates plasma membrane organization and prevents intracellular cell wall growth in Candida albicans. Mol Biol Cell 19(12):5214-25.
       
  • Banerjee D, et al. (2008) Responses of pathogenic and nonpathogenic yeast species to steroids reveal the functioning and evolution of multidrug resistance transcriptional networks. Eukaryot Cell 7(1):68-77.
       
  • Banerjee M, et al. (2008) UME6, a Novel Filament-specific Regulator of Candida albicans Hyphal Extension and Virulence. Mol Biol Cell 19(4):1354-65.
       
  • Cote P and Whiteway M (2008) The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest. Mol Microbiol 68(2):392-404.
       
  • Dignard D, et al. (2008) Heterotrimeric G-protein subunit function in Candida albicans: both the alpha and beta subunit of the pheromone response G protein are required for mating. Eukaryot Cell 7(9):1591-9.
       
  • Dunkel N, et al. (2008) A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 7(7):1180-90.
       
  • Goyard S, et al. (2008) The Yak1 Kinase Is Involved in the Initiation and Maintenance of Hyphal Growth in Candida albicans. Mol Biol Cell 19(5):2251-2266. Courtesy of the Galar Fungail Consortium
         
  • Hogues H, et al. (2008) Transcription factor substitution during the evolution of fungal ribosome regulation. Mol Cell 29(5):552-62.
           
  • Lavoie H, et al. (2008) A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics 9(1):578.
         
  • Lelandais G, et al. (2008) Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 9(11):R164.
         
  • Marcil A, et al. (2008) Analysis of PRA1 and its relationship to Candida albicans-macrophage interactions. Infect Immun 76(9):4345-58.
       
  • Menon V, et al. (2008) Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulence. FEMS Yeast Res 8(5):756-63.
       
  • Nobile CJ, et al. (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10(11):2180-96.
       
  • Ramsdale M, et al. (2008) MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans. Mol Biol Cell 19(10):4393-403.
             
  • Rauceo JM, et al. (2008) Regulation of the Candida albicans Cell Wall Damage Response by Transcription Factor Sko1 and PAS Kinase Psk1. Mol Biol Cell 19(7):2741-51.
       
  • Thewes S, et al. (2008) Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. BMC Microbiol. 2008 Oct 24;8:187.
       
  • Tuch BB, et al. (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6(2):e38.
         
  • Wimalasena TT, et al. (2008) Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol. 2008 Sep;45(9):1235-47. Epub 2008 Jun 14.
       


2007:
  • Alvarez FJ and Konopka JB (2007) Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell 18(3):965-75.
       
  • Bahn YS, et al. (2007) Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans. Eukaryot Cell 6(12):2376-90.
       
  • Borneman AR, et al. (2007) Divergence of transcription factor binding sites across related yeast species. Science 317(5839):815-9.
       
  • Cantero PD, et al. (2007) Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans. Mol Microbiol 64(4):1115-28.
       
  • Fernandez-Arenas E, et al. (2007) Integrated Proteomics and Genomics Strategies Bring New Insight into Candida albicans Response upon Macrophage Interaction. Mol Cell Proteomics 6(3):460-78.
         
  • Kaur R, et al. (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S A 104(18):7628-33.
       
  • Kunze D, et al. (2007) Multiple functions of DOA1 in Candida albicans. Microbiology 153(Pt 4):1026-41.
       
  • Liu TT, et al. (2007) Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 6(11):2122-38.
         
  • Martchenko M, et al. (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17(12):1007-13.
       
  • Mitrovich QM, et al. (2007) Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans. Genome Res. 2007 Apr;17(4):492-502. Epub 2007 Mar 9.
       
  • Mitrovich QM and Guthrie C (2007) Evolution of small nuclear RNAs in S. cerevisiae, C. albicans and other hemiascomycetous yeasts. RNA. 2007 Dec;13(12):2066-80.
       
  • Morschhauser J, et al. (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3(11):e164.
         
  • Rossignol T, et al. (2007) Transcriptional response of Candida parapsilosis following exposure to farnesol. Antimicrob Agents Chemother 51(7):2304-12.
         
  • Sexton JA, et al. (2007) Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor. Yeast 24(10):847-60.
       
  • Thewes S, et al. (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63(6):1606-28.
         
  • Uppuluri P and Chaffin WL, et al. (2007) Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Mol Microbiol 64(6):1572-86.
       
  • Uppuluri P, et al. (2007) Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. Yeast 24(8):681-93.
       
  • Vylkova S, et al. (2007) Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Eukaryot Cell 6(10):1876-88.
       
  • Wilson D, et al. (2007) Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans. Mol Microbiol 65(4):841-56.
         
  • Xu D, et al. (2007) Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3(6):e92.
       
  • Yeater KM, et al. (2007) Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology 153(Pt 8):2373-85.
       
  • Zakikhany K, et al. (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9(12):2938-54.
         
  • Zordan RE, et al. (2007) Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol 5(10):e256.
       


2006:
  • Brown V, et al. (2006) A glucose sensor in Candida albicans. Eukaryot Cell 5(10):1726-37.
       
  • Bruno VM, et al. (2006) Control of the C. albicans Cell Wall Damage Response by Transcriptional Regulator Cas5. PLoS Pathog. 2006 Mar 17;2(3):e21
       
  • Cao F, et al. (2006) The Flo8 Transcription Factor Is Essential for Hyphal Development and Virulence in Candida albicans. Mol Biol Cell 17(1):295-307.
       
  • Castillo L, et al. (2006) Genomic response programs of Candida albicans following protoplasting and regeneration. Fungal Genet Biol 43(2):124-34.
       
  • Cheng G, et al. (2006) Cellular and molecular biology of Candida albicans estrogen response. Eukaryot Cell 5(1):180-91.
       
  • Dignard D and Whiteway M (2006) SST2, a Regulator of G-Protein Signaling for the Candida albicans Mating Response Pathway. Eukaryot Cell 5(1):192-202.
         
  • Ebanks RO, et al. (2006) Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics 6(7):2147-56.
       
  • Enjalbert B, et al. (2006) Role of the Hog1 Stress-activated Protein Kinase in the Global Transcriptional Response to Stress in the Fungal Pathogen Candida albicans. Mol Biol Cell 17(2):1018-32.
       
  • Karababa M, et al. (2006) CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol. 2006 Mar;59(5):1429-51.
       
  • Lepak A, et al. (2006) Time course of microbiologic outcome and gene expression in Candida albicans during and following in vitro and in vivo exposure to fluconazole. Antimicrob Agents Chemother 50(4):1311-9.
       
  • Mukherjee PK, et al. (2006) Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun 74(7):3804-16.
       
  • Mulhern SM, et al. (2006) Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryot Cell 5(12):2001-13.
         
  • Oberholzer U, et al. (2006) Transcript Profiles of Candida albicans Cortical Actin Patch Mutants Reflect Their Cellular Defects: Contribution of the Hog1p and Mkc1p Signaling Pathways. Eukaryot Cell 5(8):1252-65.
         
  • Selmecki A, et al. (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313(5785):367-70.
       
  • Setiadi ER, et al. (2006) Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol 361(3):399-411.
       
  • Srikantha T, et al. (2006) TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell 5(10):1674-87.
       
  • Thomas DP, et al. (2006) Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6(21):5795-804.
       
  • Tsong AE, et al. (2006) Evolution of alternative transcriptional circuits with identical logic. Nature 443(7110):415-20.
       
  • Wang Y, et al. (2006) Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med 40(7):1201-9.
       
  • Xu Z, et al. (2006) cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients. Int J Med Microbiol 296(6):421-34.
       


2005:
  • Andes D, et al. (2005) A Simple Approach for Estimating Gene Expression in Candida albicans Directly from a Systemic Infection Site. J Infect Dis 192(5):893-900.
       
  • Bachewich C, et al. (2005) Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Mol Microbiol. 2005 Aug;57(4):942-59.
       
  • Cao YY, et al. (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother. 2005 Feb;49(2):584-9.
       
  • Enjalbert B and Whiteway M, et al. (2005) Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 4(7):1203-10.
       
  • Fradin C, et al. (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol. 2005 Apr;56(2):397-415. Courtesy of the Galar Fungail Consortium
       
  • Garcia-Sanchez S, et al. (2005) Global Roles of Ssn6 in Tup1- and Nrg1-dependent Gene Regulation in the Fungal Pathogen, Candida albicans. Mol Biol Cell 16(6):2913-25. Courtesy of the Galar Fungail Consortium; study supported by the European Commission, The Wellcome Trust, and the UK Biotechnology and Biological Sciences Research Council.
         
  • Hromatka BS, et al. (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16(10):4814-26.
       
  • Kadosh D and Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16(6):2903-12.
       
  • Liu TT, et al. (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49(6):2226-36N.
       
  • Murillo LA, et al. (2005) Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans. Eukaryot Cell 4(9):1562-73.
       
  • Nobile CJ and Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15(12):1150-5.
       
  • Selmecki A, et al. (2005) Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol 55(5):1553-65.
       
  • Tournu H, et al. (2005) Global role of the protein kinase Gcn2 in the human pathogen Candida albicans. Eukaryot Cell 4(10):1687-96.
       
  • Zhao R, et al. (2005) Unique aspects of gene expression during Candida albicans mating and possible G(1) dependency. Eukaryot Cell 4(7):1175-90.
       


2004:
  • Bensen ES, et al. (2004) Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54(5):1335-51.
       
  • Coste AT, et al. (2004) TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3(6):1639-52.
       
  • Doedt T, et al. (2004) APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15(7):3167-80.
       
  • Forche A, et al. (2004) Genome-wide single-nucleotide polymorphism map for Candida albicans. Eukaryot Cell. 2004 Jun;3(3):705-14.
       
  • Garcia-Sanchez S, et al. (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3(2):536-45.
       
  • Gasch AP, et al. (2004) Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol. 2004 Dec;2(12):e398.
       
  • Harcus D, et al. (2004) Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 15(10):4490-9
         
  • Karababa M, et al. (2004) Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48(8):3064-79.
       
  • Lan CY, et al. (2004) Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol 53(5):1451-69.
       
  • Lorenz MC, et al. (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3(5):1076-87.
       
  • Moran G, et al. (2004) Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150(Pt 10):3363-82.
       
  • Nicholls S, et al. (2004) Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3(5):1111-23.
       
  • Yin Z, et al. (2004) Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics. 2004 Aug;4(8):2425-36.
       


2003:
  • De Groot PW, et al. (2003) Genome-wide identification of fungal GPI proteins. Yeast. 2003 Jul 15;20(9):781-96.
       
  • Enjalbert B, et al. (2003) Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell. 2003 Apr;14(4):1460-7.
       
  • Fradin C, et al. (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol. 2003 Mar;47(6):1523-43. Courtesy of the Galar Fungail Consortium
       
  • Rogers PD and Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47(4):1220-7.
       


2002:
  • Cowen LE, et al. (2002) Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci U S A 99(14):9284-9.
         
  • Lan CY, et al. (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 99(23):14907-12.
       
  • Nantel A, et al. (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13(10):3452-65.
         


2001:
  • Murad AM, et al. (2001) Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42(4):981-93.
       


Return to CGD Send a Message to the CGD Curators