Highlights in Candida biology

Help

The selected topics on the bulleted list below link to sets of references compiled by CGD curators. These lists are intended to provide a brief overview of literature pertaining to each topic, rather than comprehensive bibliographies.



  Selected Topics in Candida albicans Biology


Selected Topics in Candida glabrata Biology


Selected Topics in Candida auris Biology




 


Selected Topics in Candida albicans Biology



Autophagy

Kiel JA. Autophagy in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):819-30.
   

Palmer GE, Askew DS, Williamson PR. The diverse roles of autophagy in medically important fungi. Autophagy. 2008 Nov 16;4(8):982-8. Epub 2008 Nov 29.
   

Palmer GE. Autophagy in the invading pathogen. Autophagy. 2007 May-Jun;3(3):251-3. Epub 2007 May 10.
   

Palmer GE, Kelly MN, Sturtevant JE. Autophagy in the pathogen Candida albicans. Microbiology. 2007 Jan;153(Pt 1):51-8.
   

List last updated: 05/26/2010 Back to top



Biofilm Formation

Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Curr Opin Microbiol. 2006 Dec;9(6):588-94. Epub 2006 Oct 20.
   

Chandra J, Mukherjee PK, Ghannoum MA. In vitro growth and analysis of Candida biofilms. Nat Protoc. 2008;3(12):1909-24.
   

Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J. Characterization of mucosal Candida albicans biofilms. PLoS One. 2009 Nov 24;4(11):e7967.
   

Ene IV, Bennett RJ. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell. 2009 Dec;8(12):1909-13. Epub 2009 Oct 16.
   

Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 2005;59:113-33.
   

Mukherjee PK, Mohamed S, Chandra J, Kuhn D, Liu S, Antar OS, Munyon R, Mitchell AP, Andes D, Chance MR, Rouabhia M, Ghannoum MA. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun. 2006 Jul;74(7):3804-16.
   

Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell. 2005 Sep;4(9):1562-73.
   

Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006 Jul;2(7):e63.
   

Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP. Complementary adhesin function in C. albicans biofilm formation. Curr Biol. 2008 Jul 22;18(14):1017-24.
   

Paulitsch AH, Willinger B, Zsalatz B, Stabentheiner E, Marth E, Buzina W. In-vivo Candida biofilms in scanning electron microscopy. Med Mycol. 2009 Nov;47(7):690-6.
   

Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340-55.
   

Sahni N, Yi S, Daniels KJ, Srikantha T, Pujol C, Soll DR. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog. 2009 Oct;5(10):e1000601. Epub 2009 Oct 2.
   

Seneviratne CJ, Jin L, Samaranayake LP. Biofilm lifestyle of Candida: a mini review. Oral Dis. 2008 Oct;14(7):582-90.
   

Thomas DP, Bachmann SP, Lopez-Ribot JL. Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics. 2006 Nov;6(21):5795-804.
   

ten Cate JM, Klis FM, Pereira-Cenci T, Crielaard W, de Groot PW. Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res. 2009 Feb;88(2):105-15.
   

Thein ZM, Seneviratne CJ, Samaranayake YH, Samaranayake LP. Community lifestyle of Candida in mixed biofilms: a mini review. Mycoses. 2009 Nov;52(6):467-75. Epub 2009 May 27.
   

Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, Kadosh D, Lopez-Ribot JL. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010 Mar 26;6(3):e1000828.
   

Uppuluri P, Pierce CG, Lopez-Ribot JL. Candida albicans biofilm formation and its clinical consequences. Future Microbiol. 2009 Dec;4:1235-7.
   

List last updated: 05/15/2010 Back to top



Cell Cycle

Barton R, Gull K.Variation in cytoplasmic microtubule organization and spindle length between the two forms of the dimorphic fungus Candida albicans. J Cell Sci. 1988 Oct;91 ( Pt 2):211-20.
   

Berman, J. Morphogenesis and cell cycle progression in Candida albicans.2006 Dec;9(6):595-601. Epub 2006 Oct 20.
   

Chapa y Lazo B, Bates S, Sudbery P. The G1 cyclin Cln3 regulates morphogenesis in Candida albicans. Eukaryot Cell. 2005 Jan;4(1):90-4.
   

Cote P, Hogues H, Whiteway M. Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell. 2009 Jul;20(14):3363-73. Epub 2009 May 28.
   

Finley KR, Berman J. Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis. Eukaryot Cell. 2005 Oct;4(10):1697-711.
   

Gow NA. Germ tube growth of Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43-55.
   

Gow NA, Henderson G, Gooday GW. Cytological interrelationships between the cell cycle and duplication cycle of Candida albicans. Microbios. 1986;47(191):97-105.
   

Singh A, Sharma S, Khuller GK. cAMP regulates vegetative growth and cell cycle in Candida albicans. Mol Cell Biochem. 2007 Oct;304(1-2):331-41. Epub 2007 Jun 8.
   

Uppuluri P, Chaffin WL. Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Mol Microbiol. 2007 Jun;64(6):1572-86.
   

Veses V, Gow NA. Pseudohypha budding patterns of Candida albicans. Med Mycol. 2009 May;47(3):268-75.
   

List last updated: 05/26/2010 Back to top



Cell Wall

Chaffin WL. Candida albicans cell wall proteins. Microbiol Mol Biol Rev. 2008 Sep;72(3):495-544.
   

Ebanks RO, Chisholm K, McKinnon S, Whiteway M, Pinto DM. Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics. 2006 Apr;6(7):2147-56.
   

Ene IV, Bennett RJ. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell. 2009 Dec;8(12):1909-13. Epub 2009 Oct 16.
   

Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. Med Mycol. 2001;39 Suppl 1:1-8.
   

Klis FM, Sosinska GJ, de Groot PW, Brul S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res. 2009 Oct;9(7):1013-28. Epub 2009 Jun 22.
   

Lopez-Ribot JL, Casanova M, Murgui A, Martinez JP. Antibody response to Candida albicans cell wall antigens. FEMS Immunol Med Microbiol. 2004 Jul 1;41(3):187-96.
   

McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, Gow NA, Erwig LP. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun. 2010 Apr;78(4):1650-8. Epub 2010 Feb 1.
   

Nather K, Munro CA. Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol Lett. 2008 Aug;285(2):137-45. Epub 2008 Jul 9.
   

Poulain D, Jouault T. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr Opin Microbiol. 2004 Aug;7(4):342-9.
   

Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res. 2006 Jan;6(1):14-29.
   

Sohn K, Schwenk J, Urban C, Lechner J, Schweikert M, Rupp S. Getting in touch with Candida albicans: the cell wall of a fungal pathogen. Curr Drug Targets. 2006 Apr;7(4):505-12.
   

Sundstrom P. Adhesion in Candida spp. Cell Microbiol. 2002 Aug;4(8):461-9.
   

List last updated: 05/14/2010 Back to top



Chlamydospore Development

Fabry W, Schmid EN, Schraps M, Ansorg R. Isolation and purification of chlamydospores of Candida albicans. Med Mycol. 2003 Feb;41(1):53-8.
   

Jansons VK, Nickerson WJ. Chemical composition of chlamydospores of Candida albicans. J Bacteriol. 1970 Nov;104(2):922-32.
   

Martin SW, Douglas LM, Konopka JB. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Eukaryot Cell. 2005 Jul;4(7):1191-202.
   

Nobile CJ, Bruno VM, Richard ML, Davis DA, Mitchell AP. Genetic control of chlamydospore formation in Candida albicans. Microbiology. 2003 Dec;149(Pt 12):3629-37.
   

Staib P, Morschhauser J. Chlamydospore formation in Candida albicans and Candida dubliniensis--an enigmatic developmental programme. Mycoses. 2007 Jan;50(1):1-12.
   

Staib P, Morschhauser J. Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis. Mol Microbiol. 2005 Jan;55(2):637-52.
   

Whiteway M, Bachewich C. Morphogenesis in Candida albicans. Annu Rev Microbiol. 2007;61:529-53.
   

List last updated: 05/13/2010 Back to top



Carbon Dioxide Sensing

Elleuche S, Poggeler S. Carbonic anhydrases in fungi. Microbiology. 2010 Jan;156(Pt 1):23-9. Epub 2009 Oct 15.
   

Huang G, Srikantha T, Sahni N, Yi S, Soll DR. CO(2) regulates white-to-opaque switching in Candida albicans. Curr Biol. 2009 Feb 24;19(4):330-4. Epub 2009 Feb 5.
   

Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Muhlschlegel FA. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol. 2005 Nov 22;15(22):2021-6. Erratum in: Curr Biol. 2005 Dec 6;15(23):2177.
   

Mitchell AP. Fungal CO2 sensing: a breath of fresh air. Curr Biol. 2005 Nov 22;15(22):R934-6.
   

Mock RC, Pollack JH, Hashimoto T. Carbon dioxide induces endotrophic germ tube formation in Candida albicans. Can J Microbiol. 1990 Apr;36(4):249-53.
   

Sims W. Effect of carbon dioxide on the growth and form of Candida albicans. J Med Microbiol. 1986 Nov;22(3):203-8.
   

Webster CE, Odds FC. Growth of pathogenic Candida isolates anaerobically and under elevated concentrations of CO2 in air. J Med Vet Mycol. 1987 Feb;25(1):47-53. Erratum in: J Med Vet Mycol 1988 Feb;26(1):75.
   

List last updated: 05/14/2010 Back to top



Drug resistance

Arana DM, Nombela C, Pla J. Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes. J Antimicrob Chemother. 2010 Jan;65(1):54-62. Epub.
   

Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d'Enfert C, Berman J, Sanglard D. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell. 2007 Oct;6(10):1889-904. Epub 2007 Aug 10.
   

Cowen LE, Steinbach WJ. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell. 2008 May;7(5):747-64. Epub 2008 Mar 28.
   

Manoharlal R, Gorantala J, Sharma M, Sanglard D, Prasad R. PAP1 [poly(A) polymerase 1] homozygosity and hyperadenylation are major determinants of increased mRNA stability of CDR1 in azole-resistant clinical isolates of Candida albicans. Microbiology. 2010 Feb;156(Pt 2):313-26. Epub 2009 Nov 12.
   

Morschhauser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol. 2010 Feb;47(2):94-106. Epub 2009 Aug 7.
   

Odds FC. In Candida albicans, resistance to flucytosine and terbinafine is linked to MAT locus homozygosity and multilocus sequence typing clade 1. FEMS Yeast Res. 2009 Oct;9(7):1091-101. Epub 2009 Sep 7.
   

Peman J, Canton E, Espinel-Ingroff A. Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther. 2009 May;7(4):453-60.
   

Rustad TR, Stevens DA, Pfaller MA, White TC. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology. 2002 Apr;148(Pt 4):1061-72.
   

Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 2009 Oct;9(7):1029-50. Epub 2009 Sep 7.
   

Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 2009 Oct;5(10):e1000705. Epub 2009 Oct 30.
   

Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N, Ellis D, Xiao M, Widmer F, Chen SC. Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol. 2009 Aug 14;9:167.
   

Nishimoto AT, Sharma C, Rogers PD (2019) Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother
   

List last updated: 11/13/2019 Back to top



Gene Disruption and Molecular Tools

Brown DH Jr, Slobodkin IV, Kumamoto CA. Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet. 1996 Apr 24;251(1):75-80.
   

Care RS, Trevethick J, Binley KM, Sudbery PE. The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol. 1999 Nov;34(4):792-8.
   

Dias MV, Basso LR Jr, Coelho PS. New transposons to generate GFP protein fusions in Candida albicans. Gene. 2008 Jul 1;417(1-2):13-8. Epub 2008 Mar 19.
   

Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993 Jul;134(3):717-28.
   

Gerami-Nejad M, Berman J, Gale CA. Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast. 2001 Jun 30;18(9):859-64.
   

Gerami-Nejad M, Dulmage K, Berman J. Additional cassettes for epitope and fluorescent fusion proteins in Candida albicans. Yeast. 2009 Jul;26(7):399-406.
   

Gerami-Nejad M, Hausauer D, McClellan M, Berman J, Gale C. Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans. Yeast. 2004 Apr 15;21(5):429-36.
   

Gola S, Martin R, Walther A, Dunkler A, Wendland J. New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast. 2003 Dec;20(16):1339-47.
   

Morschhauser J, Michel S, Staib P. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol. 1999 May;32(3):547-56.
   

Negredo A, Monteoliva L, Gil C, Pla J, Nombela C. Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology. 1997 Feb;143 ( Pt 2):297-302.
   

Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell. 2005 Feb;4(2):298-309.
   

Noble SM, Johnson AD. Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet. 2007;41:193-211.
   

Park YN, Morschhauser J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot Cell. 2005 Aug;4(8):1328-42.
   

Reuss O, Vik A, Kolter R, Morschhauser J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004 Oct 27;341:119-27.
   

Staab JF, Sundstrom P. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol. 2003 Feb;11(2):69-73.
   

Umeyama T, Nagai Y, Niimi M, Uehara Y. Construction of FLAG tagging vectors for Candida albicans. Yeast. 2002 May;19(7):611-8.
   

Wilson RB, Davis D, Enloe BM, Mitchell AP. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast. 2000 Jan 15;16(1):65-70.
   

Wilson RB, Davis D, Mitchell AP. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol. 1999 Mar;181(6):1868-74.
   

List last updated: 5/14/2010 Back to top



Genetic Instability

Ahmad A, Kabir MA, Kravets A, Andaluz E, Larriba G, Rustchenko E. Chromosome instability and unusual features of some widely used strains of Candida albicans. Yeast. 2008 Jun;25(6):433-48.
   

Arbour M, Epp E, Hogues H, Sellam A, Lacroix C, Rauceo J, Mitchell A, Whiteway M, Nantel A. Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants. FEMS Yeast Res. 2009 Oct;9(7):1070-7. Epub 2009 Aug 6.
   

Bouchonville K, Forche A, Tang KE, Selmecki A, Berman J. Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. Eukaryot Cell. 2009 Oct;8(10):1554-66. Epub 2009 Aug 21.
   

Forche A, Magee PT, Selmecki A, Berman J, May G. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics. 2009 Jul;182(3):799-811. Epub 2009 May 4.
   

Legrand M, Forche A, Selmecki A, Chan C, Kirkpatrick DT, Berman J. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies. PLoS Genet. 2008 Jan;4(1):e1. Epub 2007 Nov 20.
   

Selmecki A, Bergmann S, Berman J. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol. 2005 Mar;55(5):1553-65.
   

Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 2009 Oct;5(10):e1000705. Epub 2009 Oct 30.
   

Wu W, Pujol C, Lockhart SR, Soll DR. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics. 2005 Mar;169(3):1311-27. Epub 2005 Jan 16.
   

List last updated: 05/14/2010 Back to top



Host-Pathogen Interactions

Blasi E, Mucci A, Neglia R, Pezzini F, Colombari B, Radzioch D, Cossarizza A, Lugli E, Volpini G, Del Giudice G, Peppoloni S. Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans. FEMS Immunol Med Microbiol. 2005 Apr 1;44(1):69-79.
   

Cockayne A, Odds FC. Interactions of Candida albicans yeast cells, germ tubes and hyphae with human polymorphonuclear leucocytes in vitro. J Gen Microbiol. 1984 Mar;130(3):465-71.
   

Filler SG. Candida-host cell receptor-ligand interactions. Curr Opin Microbiol. 2006 Aug;9(4):333-9. Epub 2006 Jul 11.
   

Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 2005 Mar 23;24(6):1277-86. Epub 2005 Feb 24.
   

Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol. 2009 Dec;47(2-3):465-75. Epub 2009 Oct 31.
   

Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH. Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis. Infect Immun. 2008 Oct;76(10):4370-7. Epub 2008 Jun 23.
   

Heinsbroek SE, Brown GD, Gordon S. Dectin-1 escape by fungal dimorphism. Trends Immunol. 2005 Jul;26(7):352-4.
   

Heinsbroek SE, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD, Gordon S. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog. 2008 Nov;4(11):e1000218. Epub 2008 Nov 28.
   

Hornbach A, Heyken A, Schild L, Hube B, Loffler J, Kurzai O. The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils. Infect Immun. 2009 Dec;77(12):5216-24. Epub 2009 Oct 5.
   

Kurzai O, Schmitt C, Bršcker E, Frosch M, Kolb-Maurer A. Polymorphism of Candida albicans is a major factor in the interaction with human dendritic cells. Int J Med Microbiol. 2005 Jun;295(2):121-7.
   

Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell. 2002 Oct;1(5):657-62.
   

McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, Gow NA, Erwig LP. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun. 2010 Apr;78(4):1650-8. Epub 2010 Feb 1.
   

Mochon AB, Ye J, Kayala MA, Wingard JR, Clancy CJ, Nguyen MH, Felgner P, Baldi P, Liu H. Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog. 2010 Mar 26;6(3):e1000827.
   

Mora-Montes HM, Bates S, Netea MG, Castillo L, Brand A, Buurman ET, Diaz-Jimenez DF, Jan Kullberg B, Brown AJ, Odds FC, Gow NA. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions. J Biol Chem. 2010 Apr 16;285(16):12087-95. Epub 2010 Feb 17.
   

Mora-Montes HM, Ponce-Noyola P, Villagomez-Castro JC, Gow NA, Flores-Carreon A, Lopez-Romero E. Protein glycosylation in Candida. Future Microbiol. 2009 Nov;4:1167-83.
   

Ponniah G, Rollenhagen C, Bahn YS, Staab JF, Sundstrom P. State of differentiation defines buccal epithelial cell affinity for cross-linking to Candida albicans Hwp1. J Oral Pathol Med. 2007 Sep;36(8):456-67.
   

Rupp S. Interactions of the fungal pathogen Candida albicans with the host. Future Microbiol. 2007 Apr;2:141-51.
   

Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 2010 Mar;12(3):273-82. Epub 2009 Nov 16.
   

List last updated: 05/26/10 Back to top



Host-Pathogen Interactions: Host response to C. albicans

Fidel PL Jr. History and update on host defense against vaginal candidiasis. Am J Reprod Immunol. 2007 Jan;57(1):2-12.
   

Galan-Diez M, Arana DM, Serrano-Gomez D, Kremer L, Casasnovas JM, Ortega M, Cuesta-Dominguez A, Corbi AL, Pla J, Fernandez-Ruiz E. Candida albicans beta-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1. Infect Immun. 2010 Apr;78(4):1426-36. Epub 2010 Jan 25.
   

Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol. 2009 Sep 15;183(6):3578-81. Epub 2009 Aug 14.
   

MacCallum DM. Massive induction of innate immune response to Candida albicans in the kidney in a murine intravenous challenge model. FEMS Yeast Res. 2009 Oct;9(7):1111-22.
   

Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008 Jan;6(1):67-78.
   

Paraje MG, Correa SG, Albesa I, Sotomayor CE. Lipase of Candida albicans induces activation of NADPH oxidase and L-arginine pathways on resting and activated macrophages. Biochem Biophys Res Commun. 2009 Dec 11;390(2):263-8. Epub 2009 Sep 30.
   

Phan QT, Filler SG. Endothelial cell stimulation by Candida albicans. Methods Mol Biol. 2009;470:313-26.
   

Romani L, Bistoni F, Puccetti P. Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol. 2002 Nov;10(11):508-14.
   

Shoham S, Levitz SM. The immune response to fungal infections. Br J Haematol. 2005 Jun;129(5):569-82.
   

Torosantucci A, Romagnoli G, Chiani P, Stringaro A, Crateri P, Mariotti S, Teloni R, Arancia G, Cassone A, Nisini R. Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: a novel dimorphism-dependent mechanism to escape the host's immune response. Infect Immun. 2004 Feb;72(2):833-43.
   

List last updated: 05/26/10 Back to top



Host-Pathogen Interactions: C. albicans response to host

Brown AJ, Odds FC, Gow NA. Infection-related gene expression in Candida albicans. Curr Opin Microbiol. 2007 Aug;10(4):307-13. Epub 2007 Aug 17.
   

Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol. 2009 Dec;47(2-3):465-75. Epub 2009 Oct 31.
   

Hube B. Infection-associated genes of Candida albicans. Future Microbiol. 2006 Aug;1:209-18.
   

Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell. 2004 Oct;3(5):1076-87.
   

Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, Fu Y. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis. 2010 Jun 1;201(11):1718-28.
   

Mochon AB, Ye J, Kayala MA, Wingard JR, Clancy CJ, Nguyen MH, Felgner P, Baldi P, Liu H. Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog. 2010 Mar 26;6(3):e1000827.
   

Park H, Liu Y, Solis N, Spotkov J, Hamaker J, Blankenship JR, Yeaman MR, Mitchell AP, Liu H, Filler SG. Transcriptional responses of Candida albicans to epithelial and endothelial cells. Eukaryot Cell. 2009 Oct;8(10):1498-510. Epub 2009 Aug 21.
   

Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, Leonhardt I, Schild L, Seider K, Skibbe M, Slesiona S, Waechtler B, Jacobsen I, Hube B. Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res. 2009.
   

List last updated: 05/26/10 Back to top



Hypoxia

Ernst JF, Tielker D. Responses to hypoxia in fungal pathogens. Cell Microbiol. 2009 Feb;11(2):183-90. Epub 2008 Nov 3.
   

Mulhern SM, Logue ME, Butler G. Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryot Cell. 2006 Dec;5(12):2001-13. Epub 2006 Sep 22.
   

Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol. 2006 Aug 18;361(3):399-411. Epub 2006 Jul 7.
   

Stichternoth C, Ernst JF. Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl Environ Microbiol. 2009 Jun;75(11):3663-72. Epub 2009 Apr 3.
   

List last updated: 05/14/10 Back to top



Mating and the Parasexual Cycle

Alby K, Schaefer D, Bennett RJ. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature. 2009 Aug 13;460(7257):890-3.
   

Bennett RJ, Johnson AD. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 2003 May 15;22(10):2505-15.
   

Bennett RJ, Uhl MA, Miller MG, Johnson AD. Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol. 2003 Nov;23(22):8189-201.
   

Cote P, Whiteway M. The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest. Mol Microbiol. 2008 Apr;68(2):392-404. Epub 2008 Mar 14.
   

Daniels KJ, Lockhart SR, Staab JF, Sundstrom P, Soll DR. The adhesin Hwp1 and the first daughter cell localize to the a/a portion of the conjugation bridge during Candida albicans mating. Mol Biol Cell. 2003 Dec;14(12):4920-30. Epub 2003 Oct 17.
   

Ene IV, Bennett RJ. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell. 2009 Dec;8(12):1909-13. Epub 2009 Oct 16.
   

Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 2008 May 6;6(5):e110.
   

Hull CM, Johnson AD. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science. 1999 Aug 20;285(5431):1271-5.
   

Hull CM, Raisner RM, Johnson AD. Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host. Science. 2000 Jul 14;289(5477):307-10.
   

Ibrahim AS, Magee BB, Sheppard DC, Yang M, Kauffman S, Becker J, Edwards JE Jr, Magee PT. Effects of ploidy and mating type on virulence of Candida albicans. Infect Immun. 2005 Nov;73(11):7366-74.
   

Lachke SA, Lockhart SR, Daniels KJ, Soll DR. Skin facilitates Candida albicans mating. Infect Immun. 2003 Sep;71(9):4970-6.
   

Lockhart SR, Daniels KJ, Zhao R, Wessels D, Soll DR. Cell biology of mating in Candida albicans. Eukaryot Cell. 2003 Feb;2(1):49-61.
   

Lockhart SR, Pujol C, Daniels KJ, Miller MG, Johnson AD, Pfaller MA, Soll DR. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics. 2002 Oct;162(2):737-45.
   

Lockhart SR, Wu W, Radke JB, Zhao R, Soll DR. Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of Candida albicans. Genetics. 2005 Apr;169(4):1883-90. Epub 2005 Feb 3.
   

Lockhart SR, Zhao R, Daniels KJ, Soll DR. Alpha-pheromone-induced "shmooing" and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot Cell. 2003 Oct;2(5):847-55.
   

Magee BB, Magee PT. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science. 2000 Jul 14;289(5477):310-3.
   

Pendrak ML, Yan SS, Roberts DD. Hemoglobin regulates expression of an activator of mating-type locus alpha genes in Candida albicans. Eukaryot Cell. 2004 Jun;3(3):764-75.
   

Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB, Geiger J, Soll DR. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot Cell. 2004 Aug;3(4):1015-27.
   

Sahni N, Yi S, Pujol C, Soll DR. The white cell response to pheromone is a general characteristic of Candida albicans strains. Eukaryot Cell. 2009 Feb;8(2):251-6. Epub 2008 Dec 12.
   

Sherwood RK, Bennett RJ. Fungal meiosis and parasexual reproduction--lessons from pathogenic yeast. Curr Opin Microbiol. 2009 Dec;12(6):599-607. Epub 2009 Nov 4.
   

Soll DR, Lockhart SR, Zhao R. Relationship between switching and mating in Candida albicans. Eukaryot Cell. 2003 Jun;2(3):390-7.
   

Soll DR, Pujol C, Srikantha T. Sex: deviant mating in yeast. Curr Biol. 2009 Jul 14;19(13):R509-11.
   

Wu W, Pujol C, Lockhart SR, Soll DR. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics. 2005 Mar;169(3):1311-27. Epub 2005 Jan 16.
   

List last updated: 05/14/10 Back to top



Models of Infection

Calderone RA. In vitro and ex vivo assays of virulence in Candida albicans. Methods Mol Biol. 2009;499:85-93.
   

Chamilos G, Nobile CJ, Bruno VM, Lewis RE, Mitchell AP, Kontoyiannis DP. Candida albicans Cas5, a regulator of cell wall integrity, is required for virulence in murine and toll mutant fly models. J Infect Dis. 2009 Jul 1;200(1):152-7.
   

Chao CC, Hsu PC, Jen CF, Chen IH, Wang CH, Chan HC, Tsai PW, Tung KC, Wang CH, Lan CY, Chuang YJ. Zebrafish as a Model Host for Candida albicans Infection. Infect Immun. 2010 Mar 22. [Epub ahead of print]
   

Clancy CJ, Cheng S, Nguyen MH. Animal models of candidiasis. Methods Mol Biol. 2009;499:65-76.
   

de Repentigny L. Animal models in the analysis ofCandida host-pathogen interactions. Curr Opin Microbiol. 2004 Aug;7(4):324-9.
   

Du C, Calderone RA. Phagocytosis and killing assays for Candida species. Methods Mol Biol. 2009;499:17-26.
   

Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R, Vecchiarelli A, Brown AJ, d'Enfert C. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun. 2009 Nov;77(11):4847-58. Epub 2009 Aug 17.
   

Ibrahim AS, Magee BB, Sheppard DC, Yang M, Kauffman S, Becker J, Edwards JE Jr, Magee PT. Effects of ploidy and mating type on virulence of Candida albicans. Infect Immun. 2005 Nov;73(11):7366-74.
   

Ishibashi H, Hisajima T, Hu W, Yamaguchi H, Nishiyama Y, Abe S. A murine model of esophageal candidiasis with local characteristic symptoms. Microbiol Immunol. 2007;51(5):501-6.
   

Jayatilake JA, Samaranayake LP. Experimental superficial candidiasis on tissue models. Mycoses. 2010 Apr 6. [Epub ahead of print]
   

Lockhart SR, Wu W, Radke JB, Zhao R, Soll DR. Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of Candida albicans. Genetics. 2005 Apr;169(4):1883-90. Epub 2005 Feb 3.
   

MacCallum DM. Massive induction of innate immune response to Candida albicans in the kidney in a murine intravenous challenge model. FEMS Yeast Res. 2009 Oct;9(7):1111-22.
   

Mitra S, Dolan K, Foster TH, Wellington M. Imaging morphogenesis of Candida albicans during infection in a live animal. J Biomed Opt. 2010 Jan-Feb;15(1):010504.
   

Mowlds P, Coates C, Renwick J, Kavanagh K. Dose-dependent cellular and humoral responses in Galleria mellonella larvae following beta-glucan inoculation. Microbes Infect. 2010 Feb;12(2):146-53. Epub 2009 Nov 24.
   

Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett. 2008 Jun;283(2):129-39. Epub 2008 Apr 16.
   

Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell. 2009 Nov;8(11):1750-8. Epub 2009 Aug 7.
   

Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect. 2007 Apr;9(5):615-22. Epub 2007 Jan 27.
   

Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. Adaptations of Candida albicans For Growth In the Mammalian Intestinal Tract. Eukaryot Cell. 2010 Apr 30. [Epub ahead of print]
   

Rozell B, Ljungdahl PO, Mart’nez P. Host-pathogen interactions and the pathological consequences of acute systemic Candida albicans infections in mice. Curr Drug Targets. 2006 Apr;7(4):483-94.
   

Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol. 2008 Dec;46(8):749-72.
   

Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, Leonhardt I, Schild L, Seider K, Skibbe M, Slesiona S, Waechtler B, Jacobsen I, Hube B. Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res. 2009 Aug;9(5):688-700. Epub 2009 Apr 27.
   

Wu W, Lockhart SR, Pujol C, Srikantha T, Soll DR. Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol Microbiol. 2007 Jun;64(6):1587-604.
   

List last updated: 05/14/2010 Back to top



Morphogenesis and Polarized Cell Growth

Berman, J. Morphogenesis and cell cycle progression in Candida albicans. 2006 Dec;9(6):595-601. Epub 2006 Oct 20.
   

Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P. Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci. 2005 Jul 1;118(Pt 13):2935-47.
   

Gow NA. Germ tube growth of Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43-55.
   

Gow NA, Gooday GW. Cytological aspects of dimorphism in Candida albicans. Crit Rev Microbiol. 1987;15(1):73-8.
   

Gow NA, Gooday GW. Vacuolation, branch production and linear growth of germ tubes in Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2195-8.
   

Gow NA, Gooday GW. A model for the germ tube formation and mycelial growth form of Candida albicans. Sabouraudia. 1984;22(2):137-44.
   

Gow NA, Gooday GW. Growth kinetics and morphology of colonies of the filamentous form of Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2187-94.
   

Oh KB, Miyazawa H, Naito T, Matsuoka H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4664-8. Epub 2001 Mar 27.
   

Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol. 2009 Apr 28;19(8):621-9. Epub 2009 Mar 26.
   

Sinha I, Wang YM, Philp R, Li CR, Yap WH, Wang Y. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev Cell. 2007 Sep;13(3):421-32.
   

Veses V, Gow NA. Pseudohypha budding patterns of Candida albicans. Med Mycol. 2009 May;47(3):268-75.
   

Veses V, Gow NA. Vacuolar dynamics during the morphogenetic transition in Candida albicans. FEMS Yeast Res. 2008 Dec;8(8):1339-48.
   

Veses V, Richards A, Gow NA. Vacuole inheritance regulates cell size and branching frequency of Candida albicans hyphae. Mol Microbiol. 2009 Jan;71(2):505-19. Epub 2008 Nov 25.
   

Wang Y. CDKs and the yeast-hyphal decision. Curr Opin Microbiol. 2009 Dec;12(6):644-9.
   

Whiteway M, Bachewich C. Morphogenesis in Candida albicans. Annu Rev Microbiol. 2007;61:529-53.
   

List last updated: 05/14/2010 Back to top



Phenotypic switching

Anderson J, Cundiff L, Schnars B, Gao MX, Mackenzie I, Soll DR. Hypha formation in the white-opaque transition of Candida albicans. Infect Immun. 1989 Feb;57(2):458-67.
   

Anderson J, Mihalik R, Soll DR. Ultrastructure and antigenicity of the unique cell wall pimple of theCandida opaque phenotype. J Bacteriol. 1990 Jan;172(1):224-35.
   

Lohse MB, Johnson AD. White-opaque switching in Candida albicans. Curr Opin Microbiol. 2009 Dec;12(6):650-4. Epub 2009 Oct 23.
   

Alby K, Bennett RJ. Stress-induced phenotypic switching in Candida albicans. Mol Biol Cell. 2009 Jul;20(14):3178-91. Epub 2009 May 20.
   

Daniels KJ, Srikantha T, Lockhart SR, Pujol C, Soll DR. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 2006 May 17;25(10):2240-52. Epub 2006 Apr 20.
   

Huang G, Wang H, Chou S, Nie X, Chen J, Liu H. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12813-8. Epub 2006 Aug 11.
   

Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 2010 Mar 12;6(3):e1000806.
   

Kvaal CA, Srikantha T, Soll DR. Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect Immun. 1997 Nov;65(11):4468-75.
   

Liu H. Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen. Int J Med Microbiol. 2002 Oct;292(5-6):299-311.
   

Morschhauser J. Regulation of white-opaque switching in Candida albicans. Med Microbiol Immunol. 2010 Apr 14. [Epub ahead of print]
   

Ramirez-Zavala B, Reuss O, Park YN, Ohlsen K, Morschhauser J. Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog. 2008 Jun 13;4(6):e1000089.
   

Soll DR. Why does Candida albicans switch? FEMS Yeast Res. 2009 Oct;9(7):973-89. Epub 2009 Aug 7.
   

Soll DR. High-frequency switching in Candida albicans. Clin Microbiol Rev. 1992 Apr;5(2):183-203.
   

Soll DR, Lockhart SR, Zhao R. Relationship between switching and mating in Candida albicans. Eukaryot Cell. 2003 Jun;2(3):390-7.
   

Soll DR, Morrow B, Srikantha T. High-frequency phenotypic switching in Candida albicans. Trends Genet. 1993 Feb;9(2):61-5.
   

Srikantha T, Borneman AR, Daniels KJ, Pujol C, Wu W, Seringhaus MR, Gerstein M, Yi S, Snyder M, Soll DR. TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell. 2006 Oct;5(10):1674-87. Epub 2006 Sep 1.
   

Zordan RE, Galgoczy DJ, Johnson AD. Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12807-12. Epub 2006 Aug 9.
   

Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 2007 Oct;5(10):e256.
   

List last updated: 05/26/2010 Back to top



pH response

Bensen ES, Martin SJ, Li M, Berman J, Davis DA. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol. 2004 Dec;54(5):1335-51.
   

Davis DA. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol. 2009 Aug;12(4):365-70. Epub 2009 Jul 23.
   

Davis D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet. 2003 Oct;44(1):1-7. Epub 2003 Jun 18. Review. Erratum in: Curr Genet. 2003 Oct;44(1):58.
   

Davis D, Wilson RB, Mitchell AP. RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol. 2000 Feb;20(3):971-8.
   

El Barkani A, Kurzai O, Fonzi WA, Ramon A, Porta A, Frosch M, Muhlschlegel FA. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol. 2000 Jul;20(13):4635-47.
   

Kullas AL, Martin SJ, Davis D. Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol. 2007 Nov;66(4):858-71. Epub 2007 Oct 10.
   

Ramon AM, Fonzi WA. Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell. 2003 Aug;2(4):718-28.
   

Ramon AM, Porta A, Fonzi WA. Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol. 1999 Dec;181(24):7524-30.
   

List last updated: 05/14/2010 Back to top



Quorum Sensing

De Sordi L, Muhlschlegel FA. Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res. 2009 Oct;9(7):990-9.
   

Hall RA, Cottier F, Muhlschlegel FA. Molecular networks in the fungal pathogen Candida albicans. Adv Appl Microbiol. 2009;67:191-212.
   

Kruppa M. Quorum sensing and Candida albicans. Mycoses. 2009 Jan;52(1):1-10. Epub 2008 Oct 18.
   

Langford ML, Atkin AL, Nickerson KW. Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol. 2009 Dec;4:1353-62.
   

Roman E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res. 2009 Sep;9(6):942-55. Epub 2009 Jun 26.
   

Langford ML, Hasim S, Nickerson KW, Atkin AL. Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. Antimicrob Agents Chemother. 2010 Feb;54(2):940-2. Epub 2009 Nov 23.
   

List last updated: 05/14/2010 Back to top



Stress Response and Resistance

Alonso-Monge R, Roman E, Arana DM, Pla J, Nombela C. Fungi sensing environmental stress. Clin Microbiol Infect. 2009 Jan;15 Suppl 1:17-9.
   

Arana DM, Nombela C, Pla J. Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes. J Antimicrob Chemother. 2010 Jan;65(1):54-62. Epub .
   

Alonso-Monge R, Roman E, Arana DM, Pla J, Nombela C. Fungi sensing environmental stress. Clin Microbiol Infect. 2009 Jan;15 Suppl 1:17-9.
   

Alonso-Monge R, Roman E, Arana DM, Prieto D, Urrialde V, Nombela C, Pla J. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet Biol. 2010 Apr 11. [Epub ahead of print]
   

Deveau A, Piispanen AE, Jackson AA, Hogan DA. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell. 2010 Apr;9(4):569-77. Epub 2010 Jan 29.
   

Gasch AP. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast. 2007 Nov;24(11):961-76.
   

Reedy JL, Filler SG, Heitman J. Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol. 2010 Feb;47(2):107-16. Epub 2009 Sep 13.
   

Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, Brown AJ. Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol Biol Cell. 2009 Nov;20(22):4845-55. Epub 2009 Sep 16.
   

List last updated: 05/14/10 Back to top



Thigmotropism, Galvanotropism and Contact-Sensing

Brand A, Lee K, Veses V, Gow NA. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol. 2009 Mar;71(5):1155-64. Epub 2009 Jan 19.
   

Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol. 2007 Feb 20;17(4):347-52. Epub 2007 Feb 1.
   

Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P, Henry-Stanley M, Wells C, Ross K, Gow NA, Gale CA. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans. Eukaryot Cell. 2008 Apr;7(4):712-20. Epub 2008 Feb 15.
   

Davies JM, Stacey AJ, Gilligan CA. Candida albicans hyphal invasion: thigmotropism or chemotropism? FEMS Microbiol Lett. 1999 Feb 15;171(2):245-9.
   

Gow NA. Germ tube growth of Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43-55.
   

Gow NA, Perera TH, Sherwood-Higham J, Gooday GW, Gregory DW, Marshall D. Investigation of touch-sensitive responses by hyphae of the human pathogenic fungus Candida albicans. Scanning Microsc. 1994;8(3):705-10.
   

Nikawa H, Nishimura H, Hamada T, Makihira S, Samaranayake LP. Relationship between thigmotropism and Candida biofilm formation in vitro. Mycopathologia. 1998-1999;144(3):125-9.
   

Sherwood J, Gow NA, Gooday GW, Gregory DW, Marshall D. Contact sensing in Candida albicans: a possible aid to epithelial penetration. J Med Vet Mycol. 1992;30(6):461-9.
   

Watts HJ, Very AA, Perera TH, Davies JM, Gow NA. Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology. 1998 Mar;144 ( Pt 3):689-95.
   

List last updated: 05/14/10 Back to top



Vacuolar Dynamics and Inheritance

Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schafer A, Brown AJ, Gow NA. Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot Cell. 2003 Jun;2(3):398-410.
   

Gow NA. Germ tube growth of Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43-55.
   

Gow NA, Gooday GW. Vacuolation, branch production and linear growth of germ tubes in Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2195-8.
   

Gow NA, Gooday GW. A model for the germ tube formation and mycelial growth form of Candida albicans. Sabouraudia. 1984;22(2):137-44.
   

Gow NA, Gooday GW. Growth kinetics and morphology of colonies of the filamentous form of Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2187-94.
   

Veses V, Gow NA. Vacuolar dynamics during the morphogenetic transition in Candida albicans. FEMS Yeast Res. 2008 Dec;8(8):1339-48.
   

Veses V, Richards A, Gow NA. Vacuole inheritance regulates cell size and branching frequency of Candida albicans hyphae. Mol Microbiol. 2009 Jan;71(2):505-19. Epub 2008 Nov 25.
   

List last updated: 05/14/2010 Back to top



Virulence and Virulence Factors

Hogan DA, Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol. 2009 Dec;4:1263-70.
   

Kumamoto CA, Vinces MD. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol. 2005 Nov;7(11):1546-54.
   

Lengeler KB, Tielker D, Ernst JF. Protein-O-mannosyltransferases in virulence and development. Cell Mol Life Sci. 2008 Feb;65(4):528-44.
   

Mavor AL, Thewes S, Hube B. Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets. 2005 Dec;6(8):863-74.
   

Mitchell AP. Dimorphism and virulence in Candida albicans. Curr Opin Microbiol. 1998 Dec;1(6):687-92.
   

Monod M, Borg-von ZM. Secreted aspartic proteases as virulence factors of Candida species. Biol Chem. 2002 Jul-Aug;383(7-8):1087-93.
   

Roman E, Arana DM, Nombela C, Alonso-Monge R, Pla J. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 2007 Apr;15(4):181-90. Epub 2007 Feb 23.
   

Rozell B, Ljungdahl PO, Martinez P. Host-pathogen interactions and the pathological consequences of acute systemic Candida albicans infections in mice. Curr Drug Targets. 2006 Apr;7(4):483-94.
   

Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005 Nov;48(6):365-77.
   

List last updated: 05/14/2010 Back to top



Selected Topics in Candida glabrata Biology



Reviews about Candida glabrata

Kaur, R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol. 2005 Feb;55(4):1259-271. Aug;8(4)378-84.
   

Li L, Redding S, Dongari-Bagtzoglou A. Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res. 2007 Mar;86(3):204-15.
   

Ruhnke M. Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr Drug Targets. 2006 Apr;7(4):495-504.
   

Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2011 May 13. doi: 10.1111/j.1574-6976.2011.00278.x
   

List last updated: 07/13/11 Back to top



Biofilm Formation

Iraqui I, Garcia-Sanchez S, Aubert S. Dromer F, Ghigo JM, d'Enfert C, Janbon, G. The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4-dependent pathway. Mol Microbiol. 2005 Feb;55(4);1259-71.
   

Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and its susceptibility to caspofungin and anidulafungin. J Med Microbiol. 2011 May 2. [Epub ahead of print].
   

Silva S, Negri M, Henriques M, Oliviera, Williams DW, Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011 May;19(5)241-7.
   

List last updated: 07/13/11 Back to top



Cell Wall and Adhesins

Cormack BP, Ghori, N, Falkow S. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 1999 Jul 23;285(5427);578-82.
   

de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell. 2008 Nov;7(11):1951-64. Epub 2008 Sep 19.
   

De Las Peñas A, Pan SJ, Castaño I, Alder J, Cregg R, Cormack BP. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 2003 Sep 15;17(18):2245-58. Epub 2003 Sep 2.
   

Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol. 2008 May;68(3):547-59.
   

List last updated: 07/13/11 Back to top



Drug resistance

Brun S, Bergès T, Poupard P, Vauzelle-Moreau C, Renier G, Chabasse D, Bouchara JP. Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother. 2004 May;48(5):1788-96.
   

Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009 Sep;53(9):3690-9. Epub 2009 Jun 22.
   

Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One. 2011 Mar 9;6(3):e17589.
   

Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother. 2001 Apr;45(4):1174-83.
   

Tsai HF, Krol AA, Sarti KE, Bennett JE. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother. 2006 Apr;50(4):1384-92.
   

Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol. 2006 Aug;61(3):704-22. Epub 2006 Jun 27.
   

Vermitsky JP, Edlind TD Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother. 2004 Oct;48(10):3773-81.
   

List last updated: 07/13/11 Back to top



Gene Silencing

De Las Peñas A, Pan SJ, Castaño I, Alder J, Cregg R, Cormack BP. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 2003 Sep 15;17(18):2245-58. Epub 2003 Sep 2.
   

Domergue R, Castaño I, De Las Peñas A, Zupancic M, Lockatell V, Hebel JR, Johnson D, Cormack BP. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science. 2005 May 6;308(5723):866-70. Epub 2005 Mar 17.
   

Ramírez-Zavaleta CY, Salas-Delgado GE, De Las Peñas A, Castaño I. Subtelomeric silencing of the MTL3 locus of Candida glabrata requires yKu70, yKu80, and Rif1 proteins. Eukaryot Cell. 2010 Oct;9(10):1602-11. Epub 2010 Jul 30.
   

Rosas-Hernández LL, Juárez-Reyes A, Arroyo-Helguera OE, De Las Peñas A, Pan SJ, Cormack BP, Castaño I. yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata. Eukaryot Cell. 2008 Dec;7(12):2168-78. Epub 2008 Oct 3.
   

List last updated: 07/13/2011 Back to top



Mating Types

Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1632-7. Epub 2004 Jan 26.
   

Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C The asexual yeast Candida glabrata maintains distinct a and alpha haploid mating types Eukaryot Cell. 2008 May;7(5):848-58. Epub 2008 Mar 28. Erratum in: Eukaryot Cell. 2010 Apr;9(4):671-2.
   

Ramírez-Zavaleta CY, Salas-Delgado GE, De Las Peñas A, Castaño I. Subtelomeric silencing of the MTL3 locus of Candida glabrata requires yKu70, yKu80, and Rif1 proteins. Eukaryot Cell. 2010 Oct;9(10):1602-11. Epub 2010 Jul 30.
   

Srikantha T, Lachke SA, Soll DR Three mating type-like loci in Candida glabrata. Eukaryot Cell. 2003 Apr;2(2):328-40.
   

Wong S, Fares MA, Zimmermann W, Butler G, Wolfe KH. Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast Candida glabrata. Genome Biol. 2003;4(2):R10. Epub 2003 Jan 23.
   

List last updated: 07/13/2011 Back to top



Phenotypic Switching

Brockert PJ, Lachke SA, Srikantha T, Pujol C, Galask R, Soll DR. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect Immun. 2003 Dec;71(12):7109-18.
   

Lachke SA, Joly S, Daniels K, Soll DR. Phenotypic switching and filamentation in Candida glabrata. Microbiology. 2002 Sep;148(Pt 9):2661-74.
   

Lachke SA, Srikantha T, Tsai LK, Daniels K, Soll DR. Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP Infect Immun. 2000 Feb;68(2):884-95.
   

Srikantha T, Daniels KJ, Wu W, Lockhart SR, Yi S, Sahni N, Ma N, Soll DR. Dark brown is the more virulent of the switch phenotypes of Candida glabrata. Microbiology. 2008 Nov;154(Pt 11):3309-18.
   

Srikantha T, Zhao R, Daniels K, Radke J, Soll DR. Phenotypic switching in Candida glabrata accompanied by changes in expression of genes with deduced functions in copper detoxification and stress. Eukaryot Cell. 2005 Aug;4(8):1434-45.
   

List last updated: 07/13/2011 Back to top



Virulence and Pathogenesis

Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, Rohde B, Bauser C, Bader O, Sanglard D. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009 Jan;5(1):e1000268. Epub 2009 Jan 16.
   

Ferrari S, Sanguinetti M, De Bernardis F, Torelli R, Posteraro B, Vandeputte P, Sanglard D. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother. 2011 May;55(5):1852-60. Epub 2011 Feb 14.
   

Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7628-33. Epub 2007 Apr 24.
   

Kamran M, Calcagno AM, Findon H, Bignell E, Jones MD, Warn P, Hopkins P, Denning DW, Butler G, Rogers T, Mühlschlegel FA, Haynes K. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Eukaryot Cell. 2004 Apr;3(2):546-52.
   

Jacobsen ID, Brunke S, Seider K, Schwarzmüller T, Firon A, d'Enfért C, Kuchler K, Hube B. Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun. 2010 Mar;78(3):1066-77. Epub 2009 Dec 14.
   

List last updated: 07/13/2011 Back to top



Selected Topics in Candida auris Biology



Reviews about Candida auris

Navalkele BD, Revankar S, Chandrasekar P (2017) Candida auris: a worrisome, globally emerging pathogen. Expert Rev Anti Infect Ther 15(9):819-827.
   

Sears D, Schwartz BS (2017) Candida auris: An emerging multidrug-resistant pathogen. Int J Infect Dis 63:95-98.
   

Spivak ES, Hanson KE (2018) Candida auris: an Emerging Fungal Pathogen. J Clin Microbiol 56(2).
   

List last updated: 11/13/2019 Back to top



Genome Sequence

Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP (2017) Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin Infect Dis 64(2):134-140.
   

Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9(1):5346.
   

Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R (2019) ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front Microbiol 10:1445.
   

List last updated: 11/13/2019 Back to top



If you would like to suggest topics or citations to add to this list, please send a message to CGD curators with details.

Return to CGD Send a Message to the CGD Curators