Reference | Literature Topic | Species | Genes Addressed |
---|
Alvaro-Moya M, et al. (2025) Identification of Candida albicans Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach. J Proteome Res
| Large-scale protein interaction, Large-scale protein detection | C. albicans | |ALS1 |ALS3 |HWP1 |SSA2 |
Bai W, et al. (2025) Histone deacetylase Hos1 promotes the homeostasis of Candida albicans cell wall and membrane and its specific inhibitor has an antifungal activity in vivo. Microbiol Res 296:128132
| Genomic expression study | C. albicans | |BIR1 |BMT6 |BMT7 |ERG11 |ERG24 |ERG251 |ERG4 |HOS1 |KTR4 |MNN15 |PMT1 |PMT4 |RHD1 |SMC3 |
Chauhan M, et al. (2025) The Gcn5 lysine acetyltransferase mediates cell wall remodeling, antifungal drug resistance, and virulence of Candida auris. mSphere :e0006925
| Genomic expression study | C. auris | |FKS1 |FKS2 |GCN5 |
Chiang HS, et al. (2025) MNN45 is involved in Zcf31-mediated cell surface integrity and chitosan susceptibility in Candida albicans. Med Mycol
| Genomic expression study | C. albicans | |MNN45 |ZCF31 |
Jiang Q, et al. (2025) V-ATPase contributes to the cariogenicity of Candida albicans- Streptococcus mutans biofilm. NPJ Biofilms Microbiomes 11(1):41
| Genomic expression study | C. albicans | |CUP5 |VMA11 |VMA4 |
Miyazaki T, et al. (2025) Mechanisms of multidrug resistance caused by an Ipi1 mutation in the fungal pathogen Candida glabrata. Nat Commun 16(1):1023
| Genomic expression study | C. glabrata | |CDR1 |CNA1 |CNB1 |IPI1 |IPI3 |PDH1 |PDR1 |PDR13 |RIX1 |SLT2 |SSB1 |SSB2 |
Ottaviano E, et al. (2025) Pilocarpine inhibits Candida albicans SC5314 biofilm maturation by altering lipid, sphingolipid, and protein content. Microbiol Spectr :e0298724
| Large-scale protein detection | C. albicans | |ALS3 |BGL2 |CHT2 |DEF1 |ERG2 |HYR1 |IHD1 |RFX2 |
Tosiano MA, et al. (2025) Roles of P-body factors in Candida albicans filamentation and stress response. PLoS Genet 21(3):e1011632
| Genomic expression study | C. albicans | |DHH1 |EDC3 |
Wang S, et al. (2025) Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of Candida albicans. Biofilm 9:100251
| Genomic expression study | C. albicans | |ACE2 |BTA1 |CFL11 |CHT3 |CWH8 |EBP1 |FGR2 |FGR41 |GIT1 |HGT9 |HHT21 |HSP31 |JEN2 |OYE22 |MORE |
Xu Z, et al. (2025) PMA1-containing extracellular vesicles of Candida albicans triggers immune responses and colitis progression. Gut Microbes 17(1):2455508
| Genomic expression study | C. albicans | |PMA1 |
Yue D, et al. (2025) Berberine disrupts the high-affinity iron transport system to reverse the fluconazole-resistance in Candida albicans. Microb Pathog 200:107370
| Genomic expression study | C. albicans | |FTR1 |
Zhang M, et al. (2025) CO(2) potentiates echinocandin efficacy during invasive candidiasis therapy via dephosphorylation of Hsp90 by Ptc2 in condensates. Proc Natl Acad Sci U S A 122(6):e2417721122
| Other large-scale proteomic analysis | C. albicans | |CMP1 |HSP90 |PTC2 |SSB1 |
Zhang Q, et al. (2025) Cas5 Regulates the Exposure of beta-Glucan, the Cell Surface Hydrophobicity, and the Expression of Cell Wall Proteins to Remodel the Candida albicans Cell Wall and Participates in the Recruitment of Neutrophils. Microorganisms 13(3)
| Large-scale protein detection | C. albicans | |ALS1 |CAS5 |CAT1 |CSP37 |
Zhang Y, et al. (2025) Adaptive evolution of Candida albicans through modulating TOR signaling. MBio :e0394724
| Genomic expression study | C. albicans | |HYR1 |SAP6 |TOR1 |UME6 |
Arribas V, et al. (2024) Unravelling the Role of Candida albicans Prn1 in the Oxidative Stress Response through a Proteomics Approach. Antioxidants (Basel) 13(5)
| Large-scale protein detection | C. albicans | |C1_00700W_A |CR_09140C_A |CUB1 |MNL1 |NRG1 |PRN1 |QCR9 |
Avelar GM, et al. (2024) A CO(2) sensing module modulates beta-1,3-glucan exposure in Candida albicans. MBio :e0189823
| Genomic expression study | C. albicans | |NCE103 |PHO84 |RCA1 |SCH9 |XOG1 |
Balla N, et al. (2024) Isolate Specific Transcriptome Changes Exerted by Isavuconazole Treatment in Candida auris. Mycopathologia 190(1):5
| Genomic expression study | C. auris | |B9J08_000175 |B9J08_000367 |B9J08_000486 |B9J08_000654 |B9J08_001484 |B9J08_002834 |CDR1 |MDR1 |SCF1 |UPC2 |
Bergin S, et al. (2024) Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. Antimicrob Agents Chemother :e0161923
| Genomic expression study | C. parapsilosis | |CDR1 |CDR1B |ERG11 |MDR1 |MDR1B |MRR1 |
Bregon-Villahoz M, et al. (2024) Candida albicans cDNA library screening reveals novel potential diagnostic targets for invasive candidiasis. Diagn Microbiol Infect Dis 109(3):116311
| Other large-scale proteomic analysis | C. albicans | |APE2 |CYS3 |ENO1 |HYR1 |SEC21 |
Cai H, et al. (2024) Loss of Gst1 enhances resistance to MMS by reprogramming the transcription of DNA damage response genes in a Rad53-dependent manner in Candida albicans. Cell Commun Signal 22(1):495
| Genomic expression study | C. albicans | |C1_01850C_A |C1_02390W_A |C4_02700W_A |CAS1 |DUN1 |GST1 |MMS22 |NTG1 |PPH3 |RAD14 |RAD16 |RAD18 |RAD2 |RAD32 |MORE |
Chen R, et al. (2024) DNA damage repair factor Rad18 controls virulence partially via transcriptional suppression of genes HWP1 and ECE1 in Candida albicans. Virulence :2433201
| Genomic expression study | C. albicans | |ALD6 |ALS4 |AMO1 |CAP1 |ECE1 |HGT17 |HGT2 |HPD1 |HWP1 |JEN2 |PHO84 |PLB1 |RAD18 |RBR3 |
Chow EWL, et al. (2024) Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F(1) F(0) ATPase complex causes fluconazole resistance in Candida glabrata. Mol Microbiol
| Genomic expression study, Large-scale phenotype analysis | C. glabrata | |ATP22 |ATP3 |CDR1 |PDH1 |PDR1 |SNQ2 |
Dunaiski CM, et al. (2024) Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol
| Other genomic analysis | C. glabrata | |CDR1 |ERG6 |ERG7 |FKS1 |FKS2 |FPS1 |MSH2 |PDR1 |SNQ2 |
Fayed B, et al. (2024) Transcriptome Analysis of Human Dermal Cells Infected with Candida auris Identified Unique Pathogenesis/Defensive Mechanisms Particularly Ferroptosis. Mycopathologia 189(4):65
| Genomic expression study | C. auris | |KRE6 |MDR1 |
Gavandi T, et al. (2024) MIG1, TUP1 and NRG1 mediated yeast to hyphal morphogenesis inhibition in Candida albicans by ganciclovir. Braz J Microbiol
| Genomic expression study | C. albicans | |MIG1 |NRG1 |TUP1 |
Goncalves B, et al. (2024) Biofilm matrix regulation by Candida glabrata Zap1 under acidic conditions: transcriptomic and proteomic analyses. Microbiol Spectr :e0120124
| Genomic expression study | C. glabrata | |ZAP1 |
Hefny ZA, et al. (2024) Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 24(1):66
| Genomic expression study | C. albicans | |C3_06710W_A |C4_01950W_A |C7_03400C_A |GLC7 |PRA1 |RIM101 |RIM21 |RSP5 |SAP4 |SAP6 |SOD1 |SOD2 |SOD3 |SOD4 |MORE |
Hernandez-Hernandez G, et al. (2024) Abf1 negatively regulates the expression of EPA1 and affects adhesion in Candida glabrata. J Med Microbiol 73(10)
| Genomic co-immunoprecipitation study | C. glabrata | |ABF1 |EPA1 |EPA2 |RAP1 |
Huang SJ, et al. (2024) Antifungal susceptibility, molecular epidemiology, and clinical risk factors of Candida glabrata in intensive care unit in a Chinese Tertiary Hospital. Front Cell Infect Microbiol 14:1455145
| Other genomic analysis | C. glabrata | |FKS1 |FKS2 |
Jaeger M, et al. (2024) Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence :2333367
| Genomic expression study | C. albicans | |C2_05670C_A |CPH1 |CR_06090W_A |CR_07910C_A |ECE1 |EFG1 |HOC1 |MKC1 |OCH1 |SET3 |TCC1 |TUP1 |