Genome-wide Analysis papers

Help

Click on a topic to see a list of all papers associated with that topic:

Genome-wide AnalysisProteome-wide Analysis
Comparative genomic hybridizationLarge-scale protein detection
Computational analysisLarge-scale protein interaction
Genomic co-immunoprecipitation studyLarge-scale protein localization
Genomic expression studyLarge-scale protein modification
Large-scale genetic interactionOther large-scale proteomic analysis
Large-scale phenotype analysis 
Other genomic analysis 

Result Page : 1234567891011121314151617181920Next



ReferenceLiterature TopicSpeciesGenes Addressed
Abdulghani M, et al. (2022) Proteomic profile of Candida albicans biofilm. J Proteomics 265:104661
CGD Papers Entry  Pubmed Entry  
Large-scale protein localization, Large-scale protein detectionC. albicans |AGO1 |ALS10 |APR1 |ASR2 |ATP14 |ATP20 |C1_13270W_A |C2_03130W_A |C2_07290W_A |C3_01720C_A |C3_03410C_A |C3_04380C_A |C4_04800W_A |C5_04940W_A |MORE
Askari F, et al. (2022) The yapsin family of aspartyl proteases regulate glucose homeostasis in Candida glabrata J Biol Chem
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale protein localizationC. glabrata |SNF3 |YPS1 |YPS10 |YPS11 |YPS2 |YPS3 |YPS4 |YPS5 |YPS6 |YPS7 |YPS8 |YPS9
Buakaew W, et al. (2022) Proteomic Analysis Reveals Proteins Involved in the Mode of Action of beta-Citronellol Identified From Citrus hystrix DC. Leaf Against Candida albicans. Front Microbiol 13:894637
CGD Papers Entry  Pubmed Entry  
Large-scale protein detectionC. albicans |ALS2 |ALS3 |ATP3 |ATP7 |COB |COX1 |CR_01020C_A |DDR48 |GST2 |PGA4 |RBT1 |SOD1
Bui LN, et al. (2022) Tup1 Paralog CgTUP11 Is a Stronger Repressor of Transcription than CgTUP1 in Candida glabrata. mSphere :e0076521
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |TUP1
C. glabrata |HBN1 |TUP1 |TUP11 |YPS2 |YPS4
Chan W, et al. (2022) Induction of amphotericin B resistance in susceptible Candida auris by extracellular vesicles. Emerg Microbes Infect :1-40
CGD Papers Entry  Pubmed Entry  
Large-scale protein localizationC. albicans |MP65 |XOG1
Fahim A, et al. (2022) Efficacy of bakuchiol-garlic combination against virulent genes of Candida albicans. PeerJ 9:e12251
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ALS1 |ALS3 |HWP1 |SAP5
Gaspar-Cordeiro A, et al. (2022) Copper Acts Synergistically With Fluconazole in Candida glabrata by Compromising Drug Efflux, Sterol Metabolism, and Zinc Homeostasis. Front Microbiol 13:920574
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. glabrata |CDR1 |PDR1 |ZAP1
Helmstetter N, et al. (2022) Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes and drug-targets. Genetics
CGD Papers Entry  Pubmed Entry  
Other genomic analysisC. glabrata |CAGL0B00242g |ERG4 |FKS1 |MATalpha1
Henry M, et al. (2022) Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans Front Cell Infect Microbiol 11:770478
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |AHR1 |ALK8 |ARV1 |ATP1 |ATP14 |ATP18 |ATP19 |ATP2 |ATP5 |ATP7 |C1_04180W_A |CYB5 |CYR1 |DAG7 |MORE
Lee Y, et al. (2022) Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. iScience 25(6):104432
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale phenotype analysisC. albicans |HRR25
Lemberg C, et al. (2022) Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 18(4):e1010012
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |ECE1 |NRG1
Pais P, et al. (2022) Prediction of Gene and Genomic Regulation in Candida Species, Using the PathoYeastract Database: A Comparative Genomics Approach. Methods Mol Biol 2477:419-437
CGD Papers Entry  Pubmed Entry  
Computational analysisC. glabrata |QDR2 |RPN4
Qadri H, et al. (2022) Quinidine Drug Resistance transporter Knockout Candida cells modulate glucose transporter expression and accumulate metabolites leading to enhanced azole drug resistance. Fungal Genet Biol :103713
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |HGT8 |HGT9 |QDR1 |QDR2 |QDR3
Rashid S, et al. (2022) SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Front Cell Infect Microbiol 12:764711
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |GCN5 |NGG1 |SPT7 |SPT8 |TRA1 |UBP8
Salazar SB, et al. (2022) Disclosing azole resistance mechanisms in resistant C. glabrata strains encoding wild-type or gain-of-function CgPDR1 alleles through comparative genomics and transcriptomics. G3 (Bethesda)
CGD Papers Entry  Pubmed Entry  Data  
Genomic expression studyC. glabrata |ADH1 |AED1 |AQY1 |AUS1 |AWP2 |AWP6 |CAGL0A01221g |CAGL0A02299g |CAGL0E06424g |CAGL0F05137g |CAGL0H00847g |CAGL0H07469g |CAGL0J01661g |CAGL0K01353g |MORE
Schrevens S, et al. (2022) Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. glabrata |ATH1 |AUS1 |CAGL0C00253g |CAGL0C01133g |CAGL0D03784g |CAGL0I11011g |CNA1 |DUR1,2 |GAP1 |MLS1 |SKN7
Song Y, et al. (2022) 2-Alkyl-anthraquinones inhibit Candida albicans biofilm via inhibiting the formation of matrix and hyphae. Res Microbiol :103955
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ECE1 |EFG1 |HWP1 |IFD6 |PMT6
Tao L, et al. (2022) Streptococcus mutans suppresses filamentous growth of Candida albicans through secreting mutanocyclin, an unacylated tetramic acid. Virulence 13(1):542-557
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |HYR4 |IFF8 |SFL1 |SPR1 |TPK2
Wakade RS, et al. (2022) Candida albicans Filamentation Does Not Require the cAMP-PKA Pathway In Vivo. MBio :e0085122
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |CYR1 |EFG1 |NRG1 |TPK1 |TPK2
Zeng Y, et al. (2022) Lactobacillus plantarum Disrupts S. mutans-C. albicans Cross-Kingdom Biofilms. Front Cell Infect Microbiol 12:872012
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |CAT1 |CHT2 |CTN1 |ERG4
Zhu B, et al. (2022) Synergistic Antibiofilm Effects of Pseudolaric Acid A Combined with Fluconazole against Candida albicans via Inhibition of Adhesion and Yeast-To-Hypha Transition. Microbiol Spectr :e0147821
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ALS1 |ALS2 |ALS3 |ALS4 |ECE1 |PRA1 |TEC1
Alqahtani FM, et al. (2021) Combining Genome-Wide Gene Expression Analysis (RNA-seq) and a Gene Editing Platform (CRISPR-Cas9) to Uncover the Selectively Pro-oxidant Activity of Aurone Compounds Against Candida albicans Front Microbiol 12:708267
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |TYE7
Beekman CN, et al. (2021) Comparative genomics of white and opaque cell states supports an epigenetic mechanism of phenotypic switching in Candida albicans G3 (Bethesda) 11:jkab001
CGD Papers Entry  Pubmed Entry  
Genomic expression study
Bliss JM, et al. (2021) Transcription Profiles Associated with Inducible Adhesion in Candida parapsilosis mSphere 6:e01071-20
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. parapsilosis |CPAR2_200650 |CPAR2_400510 |CPAR2_701230 |PHR1
Ceballos-Garzon A, et al. (2021) Genotypic, proteomic, and phenotypic approaches to decipher the response to caspofungin and calcineurin inhibitors in clinical isolates of echinocandin-resistant Candida glabrata J Antimicrob Chemother
CGD Papers Entry  Pubmed Entry  
Large-scale phenotype analysisC. glabrata |CAGL0A04257g |CAGL0B03795g |CAGL0C01683g |CAGL0F04631g |CAGL0F04895g |CAGL0I05060g |CAGL0J05566g |CAGL0J08591g |CAGL0J09724g |CAGL0J11440g |CAGL0K00605g |CAGL0K04169g |CAGL0L06182g |CAGL0L10021g |MORE
Chew SY, et al. (2021) Transcriptomic and proteomic profiling revealed reprogramming of carbon metabolism in acetate-grown human pathogen Candida glabrata J Biomed Sci 28:1
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. glabrata |AAT1 |ACO1 |ADH2 |CAGL0H05137g |CAGL0J00451g |CIT1 |CTA1 |ENO1 |FBP1 |GCV1 |GPM1 |HXK2 |ICL1 |IDP2 |MORE
Delaveau T, et al. (2021) Yap5 Competes With Hap4 for the Regulation of Iron Homeostasis Genes in the Human Pathogen Candida glabrata Front Cell Infect Microbiol 11:731988
CGD Papers Entry  Pubmed Entry  
Genomic co-immunoprecipitation studyC. glabrata |AP5 |CCC1 |GLT1 |GRX4 |HAP4 |HAP5 |ISA1
Fourie R, et al. (2021) Transcriptional response of Candida albicans to Pseudomonas aeruginosa in a polymicrobial biofilm G3 (Bethesda)
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |ADH2 |ADH3 |ADH5 |C2_04480W_A |CAT1 |CSA1 |CTA4 |ECE1 |FDH3 |GAL4 |HWP1 |HYR1 |RBT1 |RBT4 |MORE
Goncalves B, et al. (2021) Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response Biochem J
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale protein localizationC. glabrata |ACT1 |AED1 |AHP1 |ALD4 |ARG1 |ARO8 |ASC1 |ATH1 |ATP1 |ATP2 |AWP12 |AWP3 |AWP6 |BMH1(B) |MORE
Guinea J, et al. (2021) Whole genome sequencing confirms Candida albicans and Candida parapsilosis microsatellite sporadic and persistent clones causing outbreaks of candidemia in neonates Med Mycol
CGD Papers Entry  Pubmed Entry  
Other genomic analysis
Result Page : 1234567891011121314151617181920Next



Return to CGD
Send a Message to the CGD Curators