Reference | Literature Topic | Species | Genes Addressed |
---|
Arribas V, et al. (2024) Unravelling the Role of Candida albicans Prn1 in the Oxidative Stress Response through a Proteomics Approach. Antioxidants (Basel) 13(5) | Large-scale protein detection | C. albicans | |C1_00700W_A |CR_09140C_A |CUB1 |MNL1 |NRG1 |PRN1 |QCR9 |
Avelar GM, et al. (2024) A CO(2) sensing module modulates beta-1,3-glucan exposure in Candida albicans. MBio :e0189823 | Genomic expression study | C. albicans | |NCE103 |PHO84 |RCA1 |SCH9 |XOG1 |
Bergin S, et al. (2024) Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. Antimicrob Agents Chemother :e0161923 | Genomic expression study | C. parapsilosis | |CDR1 |CDR1B |ERG11 |MDR1 |MDR1B |MRR1 |
Bregon-Villahoz M, et al. (2024) Candida albicans cDNA library screening reveals novel potential diagnostic targets for invasive candidiasis. Diagn Microbiol Infect Dis 109(3):116311 | Other large-scale proteomic analysis | C. albicans | |APE2 |CYS3 |ENO1 |HYR1 |SEC21 |
Cai H, et al. (2024) Loss of Gst1 enhances resistance to MMS by reprogramming the transcription of DNA damage response genes in a Rad53-dependent manner in Candida albicans. Cell Commun Signal 22(1):495 | Genomic expression study | C. albicans | |C1_01850C_A |C1_02390W_A |C4_02700W_A |CAS1 |DUN1 |GST1 |MMS22 |NTG1 |PPH3 |RAD14 |RAD16 |RAD18 |RAD2 |RAD32 |MORE |
Chow EWL, et al. (2024) Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F(1) F(0) ATPase complex causes fluconazole resistance in Candida glabrata. Mol Microbiol | Genomic expression study, Large-scale phenotype analysis | C. glabrata | |ATP22 |ATP3 |CDR1 |PDH1 |PDR1 |SNQ2 |
Dunaiski CM, et al. (2024) Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol | Other genomic analysis | C. glabrata | |CDR1 |ERG6 |ERG7 |FKS1 |FKS2 |FPS1 |MSH2 |PDR1 |SNQ2 |
Fayed B, et al. (2024) Transcriptome Analysis of Human Dermal Cells Infected with Candida auris Identified Unique Pathogenesis/Defensive Mechanisms Particularly Ferroptosis. Mycopathologia 189(4):65 | Genomic expression study | C. auris | |KRE6 |MDR1 |
Gavandi T, et al. (2024) MIG1, TUP1 and NRG1 mediated yeast to hyphal morphogenesis inhibition in Candida albicans by ganciclovir. Braz J Microbiol | Genomic expression study | C. albicans | |MIG1 |NRG1 |TUP1 |
Goncalves B, et al. (2024) Biofilm matrix regulation by Candida glabrata Zap1 under acidic conditions: transcriptomic and proteomic analyses. Microbiol Spectr :e0120124 | Genomic expression study | C. glabrata | |ZAP1 |
Hefny ZA, et al. (2024) Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 24(1):66 | Genomic expression study | C. albicans | |C3_06710W_A |C4_01950W_A |C7_03400C_A |GLC7 |PRA1 |RIM101 |RIM21 |RSP5 |SAP4 |SAP6 |SOD1 |SOD2 |SOD3 |SOD4 |MORE |
Hernandez-Hernandez G, et al. (2024) Abf1 negatively regulates the expression of EPA1 and affects adhesion in Candida glabrata. J Med Microbiol 73(10) | Genomic co-immunoprecipitation study | C. glabrata | |ABF1 |EPA1 |EPA2 |RAP1 |
Huang SJ, et al. (2024) Antifungal susceptibility, molecular epidemiology, and clinical risk factors of Candida glabrata in intensive care unit in a Chinese Tertiary Hospital. Front Cell Infect Microbiol 14:1455145 | Other genomic analysis | C. glabrata | |FKS1 |FKS2 |
Jaeger M, et al. (2024) Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence :2333367 | Genomic expression study | C. albicans | |C2_05670C_A |CPH1 |CR_06090W_A |CR_07910C_A |ECE1 |EFG1 |HOC1 |MKC1 |OCH1 |SET3 |TCC1 |TUP1 |
Kim M-J, et al. (2024) A Brg1-Rme1 circuit in Candida albicans hyphal gene regulation. MBio :e0187224 | Genomic expression study | C. albicans | |BRG1 |RME1 |
Kim M-J, et al. (2024) Strain variation in Candida albicans glycolytic gene regulation. mSphere :e0057924 | Genomic expression study | C. albicans | |FBA1 |GAL4 |GPM1 |PGK1 |TDH3 |TPI1 |TYE7 |
Kramara J, et al. (2024) Systematic analysis of the Candida albicans kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation in vitro and in vivo. mBio :e0124924 | Large-scale phenotype analysis | C. albicans | |ATG1 |BCK1 |BUD32 |CBK1 |CKA2 |CKB1 |CKB2 |CLA4 |CR_06040W_A |FRK1 |GCN2 |GIN4 |HOG1 |IRE1 |MORE |
Kumar K, et al. (2024) SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 27(4):109607 | Other genomic analysis, Genomic expression study | C. glabrata | |BMT2 |CHD1 |EPA1 |INO80 |ISW1 |ISW2 |SNF2 |STH1 |SWR1 |
Lash E, et al. (2024) The spliceosome impacts morphogenesis in the human fungal pathogen Candida albicans. MBio :e0153524 | Genomic expression study | C. albicans | |BRR2 |BUD31 |CEF1 |CWC25 |EXM2 |GCR3 |HSH49 |HUB1 |LSM4 |LSM5 |LSM6 |LSM7 |MSL5 |MUD2 |MORE |
Louvet M, et al. (2024) Ume6-dependent pathways of morphogenesis and biofilm formation in Candida auris. Microbiol Spectr :e0153124 | Genomic expression study | C. auris | |ALS4498 |HGC1 |SCF1 |UME6 |
Luo G, et al. (2024) A human commensal-pathogenic fungus suppresses host immunity via targeting TBK1. Cell Host Microbe | Genomic expression study | C. albicans | |CMI1 |
Misas E, et al. (2024) Genomic description of acquired fluconazole- and echinocandin-resistance in patients with serial Candida glabrata isolates. J Clin Microbiol :e0114023 | Other genomic analysis | C. glabrata | |FKS1 |FKS2 |PDR1 |
Mo X, et al. (2024) In vivo RNA sequencing reveals a crucial role of Fus3-Kss1 MAPK pathway in Candida glabrata pathogenicity. mSphere :e0071524 | Genomic expression study | C. glabrata | |FET3 |FTR1 |FUS3 |KSS1 |SIT1 |STE12 |STE12B |TEC1 |TEC2 |YPS1 |
Nickels TJ, et al. (2024) Tn-seq of the Candida glabrata reference strain CBS138 reveals epigenetic plasticity, structural variation, and intrinsic mechanisms of resistance to micafungin. G3 (Bethesda) | Other genomic analysis | C. glabrata | |CDR1 |FKS2 |PDR1 |
O'Connor-Moneley J, et al. (2024) Deletion of the Candida albicans TLO gene family results in alterations in membrane sterol composition and fluconazole tolerance. PLoS ONE 19(8):e0308665 | Genomic expression study | C. albicans | |AOX2 |CTA2 |CTA24 |CTA26 |ERG2 |ERG25 |ERG251 |ERG3 |ERG6 |TLO1 |TLO11 |UPC2 |
Park J, et al. (2024) Ctr9 promotes virulence of Candida albicans by regulating methionine metabolism. Virulence 15(1):2405616 | Genomic expression study | C. albicans | |C2_08630C_A |CTR9 |
Pavesic MW, et al. (2024) Calcineurin-dependent contributions to fitness in the opportunistic pathogen Candida glabrata. mSphere 9(1):e0055423 | Large-scale phenotype analysis | C. glabrata | |ALG5 |ALG6 |ALG8 |APL2 |APS1 |ARF1 |CNB1 |CRZ1 |DCW1 |FKS1 |FLC2 |INP53 |LAS21 |PDR1 |MORE |
Piatkowski J, et al. (2024) Mitochondrial transcriptome of Candida albicans in flagranti - direct RNA sequencing reveals a new layer of information. BMC Genomics 25(1):860 | Genomic expression study | C. albicans | |MSU1 |PET127 |
Rai LS, et al. (2024) Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 22(6):e3002693 | Other genomic analysis, Genomic expression study | C. albicans | |C4_02190C_A |ECE1 |HWP1 |HYR1 |INO1 |ZCF15 |ZCF26 |
Raj K, et al. (2024) Decoding the role of oxidative stress resistance and alternative carbon substrate assimilation in the mature biofilm growth mode of Candida glabrata. BMC Microbiol 24(1):128 | Genomic expression study | C. glabrata | |COF1 |ERG11 |ERG9 |ICL1 |MLS1 |NTH1 |PCK1 |PEP1 |TEF3 |