Genome-wide Analysis papers

Help

Click on a topic to see a list of all papers associated with that topic:

Genome-wide AnalysisProteome-wide Analysis
Comparative genomic hybridizationLarge-scale protein detection
Computational analysisLarge-scale protein interaction
Genomic co-immunoprecipitation studyLarge-scale protein localization
Genomic expression studyLarge-scale protein modification
Large-scale genetic interactionOther large-scale proteomic analysis
Large-scale phenotype analysis 
Other genomic analysis 

Result Page : 1234567891011121314151617181920Next

ReferenceLiterature TopicSpeciesGenes Addressed
Abdulghani M, et al. (2022) Proteomic profile of Candida albicans biofilm. J Proteomics 265:104661
CGD Papers Entry  Pubmed Entry  
Large-scale protein localization, Large-scale protein detectionC. albicans |AGO1 |ALS10 |APR1 |ASR2 |ATP14 |ATP20 |C1_13270W_A |C2_03130W_A |C2_07290W_A |C3_01720C_A |C3_03410C_A |C3_04380C_A |C4_04800W_A |C5_04940W_A |MORE
Al-Madboly LA, et al. (2022) Novel Preclinical Study of Galloylquinic Acid Compounds from Copaifera lucens with Potent Antifungal Activity against Vaginal Candidiasis Induced in a Murine Model via Multitarget Modes of Action. Microbiol Spectr :e0272421
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ALS1 |HWP1 |LIP1 |PLB1 |SAP1
Andrawes N, et al. (2022) Regulation of heme utilization and homeostasis in Candida albicans. PLoS Genet 18(9):e1010390
CGD Papers Entry  Pubmed Entry  
Genomic expression study, Large-scale phenotype analysisC. albicans |C1_05970W_A |C1_11410C_A |C3_04600C_A |C4_06240W_A |CAT1 |CPD2 |CR_06690C_A |CSA1 |CSU57 |DFG16 |DUR4 |FLC2 |FRP1 |FRP2 |MORE
Askari F, et al. (2022) The yapsin family of aspartyl proteases regulate glucose homeostasis in Candida glabrata J Biol Chem
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale protein localizationC. glabrata |SNF3 |YPS1 |YPS10 |YPS11 |YPS2 |YPS3 |YPS4 |YPS5 |YPS6 |YPS7 |YPS8 |YPS9
Bataineh MTA, et al. (2022) Exploring the effect of estrogen on Candida albicans hyphal cell wall glycans and ergosterol synthesis. Front Cell Infect Microbiol 12:977157
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ALS3 |ECE1 |GCV2 |HGT20 |HWP1 |IHD1 |MEP1 |SOD5
Bottcher B, et al. (2022) Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. NPJ Biofilms Microbiomes 8(1):78
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale protein localization, Genomic expression studyC. albicans |STP2
Buakaew W, et al. (2022) Proteomic Analysis Reveals Proteins Involved in the Mode of Action of beta-Citronellol Identified From Citrus hystrix DC. Leaf Against Candida albicans. Front Microbiol 13:894637
CGD Papers Entry  Pubmed Entry  
Large-scale protein detectionC. albicans |ALS2 |ALS3 |ATP3 |ATP7 |COB |COX1 |CR_01020C_A |DDR48 |GST2 |PGA4 |RBT1 |SOD1
Bui LN, et al. (2022) Tup1 Paralog CgTUP11 Is a Stronger Repressor of Transcription than CgTUP1 in Candida glabrata. mSphere :e0076521
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. glabrata |HBN1 |TUP1 |TUP11 |YPS2 |YPS4
C. albicans |TUP1
Chan W, et al. (2022) Induction of amphotericin B resistance in susceptible Candida auris by extracellular vesicles. Emerg Microbes Infect :1-40
CGD Papers Entry  Pubmed Entry  
Large-scale protein localizationC. albicans |MP65 |XOG1
Dekkerova J, et al. (2022) Farnesol Boosts the Antifungal Effect of Fluconazole and Modulates Resistance in Candida auris through Regulation of the CDR1 and ERG11 Genes. J Fungi (Basel) 8(8)
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. auris |ERG11
Do E, et al. (2022) Collaboration between Antagonistic Cell Type Regulators Governs Natural Variation in the Candida albicans Biofilm and Hyphal Gene Expression Network. MBio :e0193722
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |BRG1 |EFG1 |TEC1 |WOR1
Fahim A, et al. (2022) Efficacy of bakuchiol-garlic combination against virulent genes of Candida albicans. PeerJ 9:e12251
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ALS1 |ALS3 |HWP1 |SAP5
Feng Y, et al. (2022) Transcriptional Profiling of the Candida albicans Response to the DNA Damage Agent Methyl Methanesulfonate. Int J Mol Sci 23(14)
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |C2_08420W_A |C4_07010C_A |CAP1 |COX17 |CR_01020C_A |DDR48 |GST2 |GST3 |PRI2 |RAD53 |RAD7 |SRV2
Gaspar-Cordeiro A, et al. (2022) Copper Acts Synergistically With Fluconazole in Candida glabrata by Compromising Drug Efflux, Sterol Metabolism, and Zinc Homeostasis. Front Microbiol 13:920574
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. glabrata |CDR1 |PDR1 |ZAP1
Helmstetter N, et al. (2022) Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes and drug-targets. Genetics
CGD Papers Entry  Pubmed Entry  
Other genomic analysisC. glabrata |CAGL0B00242g |ERG4 |FKS1 |MATalpha1
Henry M, et al. (2022) Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans Front Cell Infect Microbiol 11:770478
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |AHR1 |ALK8 |ARV1 |ATP1 |ATP14 |ATP18 |ATP19 |ATP2 |ATP5 |ATP7 |C1_04180W_A |CYB5 |CYR1 |DAG7 |MORE
Jenull S, et al. (2022) Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. MBio :e0079922
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. auris |FKS1
Lee Y, et al. (2022) Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. iScience 25(6):104432
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale phenotype analysisC. albicans |HRR25
Lemberg C, et al. (2022) Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 18(4):e1010012
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |ECE1 |NRG1
Lv QZ, et al. (2022) iTRAQ-based proteomics revealed baicalein enhanced oxidative stress of Candida albicans by up-regulating CPD2 expression. Med Mycol
CGD Papers Entry  Pubmed Entry  
Large-scale protein detectionC. albicans |CPD2 |ERG10 |ERG11 |ERG25 |ERG3 |ERG5 |ERG6 |NCP1 |SNQ2
Pais P, et al. (2022) Prediction of Gene and Genomic Regulation in Candida Species, Using the PathoYeastract Database: A Comparative Genomics Approach. Methods Mol Biol 2477:419-437
CGD Papers Entry  Pubmed Entry  
Computational analysisC. glabrata |QDR2 |RPN4
Qadri H, et al. (2022) Quinidine Drug Resistance transporter Knockout Candida cells modulate glucose transporter expression and accumulate metabolites leading to enhanced azole drug resistance. Fungal Genet Biol :103713
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |HGT8 |HGT9 |QDR1 |QDR2 |QDR3
Rashid S, et al. (2022) SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Front Cell Infect Microbiol 12:764711
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |GCN5 |NGG1 |SPT7 |SPT8 |TRA1 |UBP8
Salazar SB, et al. (2022) Disclosing azole resistance mechanisms in resistant C. glabrata strains encoding wild-type or gain-of-function CgPDR1 alleles through comparative genomics and transcriptomics. G3 (Bethesda)
CGD Papers Entry  Pubmed Entry  Data  
Genomic expression studyC. glabrata |ADH1 |AED1 |AQY1 |AUS1 |AWP2 |AWP6 |CAGL0A01221g |CAGL0A02299g |CAGL0E06424g |CAGL0F05137g |CAGL0H00847g |CAGL0H07469g |CAGL0J01661g |CAGL0K01353g |MORE
Schrevens S, et al. (2022) Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. glabrata |ATH1 |AUS1 |CAGL0C00253g |CAGL0C01133g |CAGL0D03784g |CAGL0I11011g |CNA1 |DUR1,2 |GAP1 |MLS1 |SKN7
Song Y, et al. (2022) 2-Alkyl-anthraquinones inhibit Candida albicans biofilm via inhibiting the formation of matrix and hyphae. Res Microbiol :103955
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ECE1 |EFG1 |HWP1 |IFD6 |PMT6
Spruijtenburg B, et al. (2022) Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg Microbes Infect :1-15
CGD Papers Entry  Pubmed Entry  
Other genomic analysisC. auris |ERG11 |TAC1b
Sriram K (2022) A mathematical model captures the role of adenyl cyclase Cyr1 and guanidine exchange factor Ira2 in creating a growth-to-hyphal bistable switch in Candida albicans. FEBS Open Bio
CGD Papers Entry  Pubmed Entry  
Computational analysisC. albicans |CYR1 |IRA2
Tao L, et al. (2022) Streptococcus mutans suppresses filamentous growth of Candida albicans through secreting mutanocyclin, an unacylated tetramic acid. Virulence 13(1):542-557
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |HYR4 |IFF8 |SFL1 |SPR1 |TPK2
Wakade RS, et al. (2022) Candida albicans Filamentation Does Not Require the cAMP-PKA Pathway In Vivo. MBio :e0085122
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |CYR1 |EFG1 |NRG1 |TPK1 |TPK2
Result Page : 1234567891011121314151617181920Next



Return to CGD
Send a Message to the CGD Curators