| Reference | Literature Topic | Species | Genes Addressed |
|---|
Alvaro-Moya M, et al. (2025) Identification of Candida albicans Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach. J Proteome Res
| Large-scale protein interaction, Large-scale protein detection | C. albicans | |ALS1 |ALS3 |HWP1 |SSA2 |
Arribas V, et al. (2025) Integrative Phosphoproteomic and Proteomic Analysis of Candida albicans Exposed to Oxidative Stress. J Proteome Res
| Other large-scale proteomic analysis, Large-scale protein detection | C. albicans | |CDC5 |GZF3 |HOG1 |KIS1 |MKC1 |
Bai W, et al. (2025) Histone deacetylase Hos1 promotes the homeostasis of Candida albicans cell wall and membrane and its specific inhibitor has an antifungal activity in vivo. Microbiol Res 296:128132
| Genomic expression study | C. albicans | |BIR1 |BMT6 |BMT7 |ERG11 |ERG24 |ERG251 |ERG4 |HOS1 |KTR4 |MNN15 |PMT1 |PMT4 |RHD1 |SMC3 |
Barker KS, et al. (2025) Mutations in TAC1B drive increased CDR1 and MDR1 expression and azole resistance in Candida auris. Antimicrob Agents Chemother :e0030025
| Genomic expression study | C. auris | |CDR1 |MDR1 |TAC1b |
Chauhan M, et al. (2025) The Gcn5 lysine acetyltransferase mediates cell wall remodeling, antifungal drug resistance, and virulence of Candida auris. mSphere :e0006925
| Genomic expression study | C. auris | |FKS1 |FKS2 |GCN5 |
Chiang HS, et al. (2025) MNN45 is involved in Zcf31-mediated cell surface integrity and chitosan susceptibility in Candida albicans. Med Mycol
| Genomic expression study | C. albicans | |MNN45 |ZCF31 |
Dan K, et al. (2025) Beyond plasma membrane disruption: Novel antifungal mechanism of Neosartorya (Aspergillus) fischeri antifungal protein 2 in Candida albicans. Int J Biol Macromol :146558
| Genomic expression study | C. albicans | |ATP1 |ENO1 |GAD1 |
Denning-Jannace CA, et al. (2025) Leveraging Vulnerabilities in Copper Trafficking for Synergistic Antifungal Activity. ACS Chem Biol
| Other large-scale proteomic analysis, Large-scale protein detection | C. albicans | |ADH1 |ATP1 |ATP2 |ATX1 |CCC2 |CRD2 |CYC1 |FET34 |GOR1 |GST2 |PDC11 |PST3 |SOD1 |SOD3 |MORE |
El Khoury P, et al. (2025) Proteomic characterization of clinical Candida glabrata isolates with varying degrees of virulence and resistance to fluconazole. PLoS ONE 20(3):e0320484
| Large-scale protein detection | C. glabrata | |ALG2 |ATG11 |ATG16 |CDR1 |PDR1 |SGF11 |
Feng J, et al. (2025) Dietary tannic acid promotes intestinal clearance of C. albicans by cross-linking hyphal chitosan. PLoS Pathog 21(10):e1013596
| Large-scale protein detection, Genomic expression study | C. albicans | |ALS2 |CDA2 |CHS1 |CHS2 |CHS3 |CHS5 |CHS7 |CHS8 |CHT1 |CHT2 |CHT4 |CSH1 |PGA13 |
Garbe E, et al. (2025) A multi-omics analysis unveils functional and regulatory links between hydroxybenzene and aromatic amino acid metabolism in Candida albicans. mSystems :e0022625
| Genomic expression study | C. albicans | |C4_00290C_A |STP2 |ZCF10 |ZCF25 |
Garg R, et al. (2025) A response to iron involving carbon metabolism in the opportunistic fungal pathogen Candida albicans. mSphere :e0004025
| Genomic expression study | C. albicans | |ADH2 |ALD5 |BIO2 |BIO32 |C3_04740C_A |CCP1 |CIT1 |CSM3 |CYC1 |FGR2 |GND1 |ICL1 |KGD2 |LAT1 |MORE |
Gause H and Johnson AD (2025) Shared metabolism between a bacterial and fungal species that reside in the human gut. Proc Natl Acad Sci U S A 122(35):e2504785122
| Genomic expression study | C. albicans | |C2_10070W_A |C5_03770C_A |CIT1 |FDH1 |
Henry M, et al. (2025) Manganese homeostasis modulates glucan and chitin unmasking in the opportunistic yeast Candida albicans. Virulence 16(1):2569630
| Genomic expression study | C. albicans | |BMT3 |BMT4 |BMT6 |BMT7 |CDA2 |CEK1 |CFL2 |CFL4 |CFL5 |CHK1 |CHS2 |CHS7 |CHT4 |CRZ1 |MORE |
Huang X, et al. (2025) Coordinated regulation of pH alkalinization by two transcription factors promotes fungal commensalism and pathogenicity. Nat Commun 16(1):7855
| Genomic expression study | C. albicans | |DAL81 |GDH2 |PCK1 |PUT1 |STP2 |
Jiang J, et al. (2025) Molecular landscape of the fungal plasma membrane and implications for antifungal action. Nat Commun 16(1):9125
| Other large-scale proteomic analysis | C. glabrata | |AQY1 |FEN1 |FKS1 |FKS2 |INP53 |OSH2 |PMA1 |RHO1 |
Jiang Q, et al. (2025) V-ATPase contributes to the cariogenicity of Candida albicans- Streptococcus mutans biofilm. NPJ Biofilms Microbiomes 11(1):41
| Genomic expression study | C. albicans | |CUP5 |VMA11 |VMA4 |
Kaur E and Acharya V (2025) Computational prediction of Homo sapiens-Candida albicans protein-protein interactions reveal key virulence factors using dual RNA-Seq data analysis. Arch Microbiol 207(5):115
| Large-scale protein interaction, Genomic expression study | C. albicans | |ERG10 |GFA1 |SOD1 |VPS4 |
Ke CL, et al. (2025) Mss2 shapes the virulence of Candida albicans through reactive oxygen species (ROS) and calcium signaling, independent of direct transcriptional control. Virulence 16(1):2590329
| Genomic expression study | C. albicans | |CR_06920W_A |MSS2 |RIM8 |SAC1 |UME6 |
Kim J, et al. (2025) Set1 is a critical transcriptional regulator in response to external signals in Candida albicans. Nucleic Acids Res 53(13)
| Genomic expression study | C. albicans | |ALS3 |ECE1 |GCN5 |HWP1 |SET1 |
Kramara J, et al. (2025) The Candida albicans transcription factor Efg1 governs hyphal morphogenesis independently of the cAMP-protein kinase A pathway. mBio :e0291325
| Genomic expression study | C. albicans | |EFG1 |
Meza-Davalos T, et al. (2025) Filamentation Profiling Reveals Multiple Transcription Regulators Contributing to the Differences Between Candida albicans and Candida dubliniensis. Mol Microbiol
| Genomic expression study | C. albicans | |BCR1 |UME6 |
| | C. dubliniensis | |ALS1 |ASH1 |BCR1 |BRG1 |CPH1 |DEF1 |FLO8 |HWP1 |NRG1 |PHO4 |RBF1 |RHD3 |RIM101 |TEC1 |MORE |
Miyazaki T, et al. (2025) Mechanisms of multidrug resistance caused by an Ipi1 mutation in the fungal pathogen Candida glabrata. Nat Commun 16(1):1023
| Genomic expression study | C. glabrata | |CDR1 |CNA1 |CNB1 |IPI1 |IPI3 |PDH1 |PDR1 |PDR13 |RIX1 |SLT2 |SSB1 |SSB2 |
Ottaviano E, et al. (2025) Pilocarpine inhibits Candida albicans SC5314 biofilm maturation by altering lipid, sphingolipid, and protein content. Microbiol Spectr :e0298724
| Large-scale protein detection | C. albicans | |ALS3 |BGL2 |CHT2 |DEF1 |ERG2 |HYR1 |IHD1 |RFX2 |
Phan-Canh T, et al. (2025) Rapid in vitro evolution of flucytosine resistance in Candida auris. mSphere 10(4):e0097724
| Genomic expression study | C. auris | |B9J08_002663 |B9J08_004113 |B9J08_004475 |B9J08_004544 |FCY2 |FUR1 |
Phan-Canh T, et al. (2025) White-Brown switching controls phenotypic plasticity and virulence of Candida auris. Cell Rep 44(7):115976
| Genomic expression study | C. auris | |B9J08_004111 |B9J08_004173 |CRZ2 |EFG1 |MSN4 |RCA1 |WOR1 |
Qin Y, et al. (2025) Transcription factor Hap2p regulates antioxidant stress responses to maintain miconazole resistance in Candida albicans. Mycology 16(3):1386-1399
| Genomic expression study | C. albicans | |CDR1 |ERG11 |ERG3 |HAP2 |MDR1 |
Ragozzino S, et al. (2025) bueMicroRNA whole-blood profiling in hospitalized patients with candidemia identified miR-125a-5p and miR-99b-5p as potential biomarkers for Candida albicans bloodstream infection. Int J Infect Dis :108148
| Genomic expression study |
Rana A and Thakur A (2025) Translation regulation promotes stress adaptation in the human fungal pathogen Candida glabrata. Genetics
| Genomic expression study | C. glabrata | |FES1 |GCN2 |GCN4 |GLK1 |GPD1 |HXT6/7 |YBT1 |ZPR1 |
Shi Z, et al. (2025) Cinnamaldehyde triggers cell wall remodeling and enhances macrophage-mediated phagocytic clearance of Candida albicans. Front Cell Infect Microbiol 15:1647320
| Genomic expression study | C. albicans | |ACE2 |ANP1 |CAS5 |CDC42 |CEK1 |CHK1 |CHS2 |CRZ2 |CST20 |ECE1 |GAL10 |GLX3 |GSC1 |GSL2 |MORE |