Genome-wide Analysis papers

Help

Click on a topic to see a list of all papers associated with that topic:

Genome-wide AnalysisProteome-wide Analysis
Comparative genomic hybridizationLarge-scale protein detection
Computational analysisLarge-scale protein interaction
Genomic co-immunoprecipitation studyLarge-scale protein localization
Genomic expression studyLarge-scale protein modification
Large-scale genetic interactionOther large-scale proteomic analysis
Large-scale phenotype analysis 
Other genomic analysis 

Result Page : 1234567891011121314151617181920Next


ReferenceLiterature TopicSpeciesGenes Addressed
Alvaro-Moya M, et al. (2025) Identification of Candida albicans Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach. J Proteome Res
CGD Papers Entry  Pubmed Entry  
Large-scale protein interaction, Large-scale protein detectionC. albicans |ALS1 |ALS3 |HWP1 |SSA2
Arribas V, et al. (2025) Integrative Phosphoproteomic and Proteomic Analysis of Candida albicans Exposed to Oxidative Stress. J Proteome Res
CGD Papers Entry  Pubmed Entry  
Other large-scale proteomic analysis, Large-scale protein detectionC. albicans |CDC5 |GZF3 |HOG1 |KIS1 |MKC1
Bai W, et al. (2025) Histone deacetylase Hos1 promotes the homeostasis of Candida albicans cell wall and membrane and its specific inhibitor has an antifungal activity in vivo. Microbiol Res 296:128132
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |BIR1 |BMT6 |BMT7 |ERG11 |ERG24 |ERG251 |ERG4 |HOS1 |KTR4 |MNN15 |PMT1 |PMT4 |RHD1 |SMC3
Barker KS, et al. (2025) Mutations in TAC1B drive increased CDR1 and MDR1 expression and azole resistance in Candida auris. Antimicrob Agents Chemother :e0030025
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. auris |CDR1 |MDR1 |TAC1b
Chauhan M, et al. (2025) The Gcn5 lysine acetyltransferase mediates cell wall remodeling, antifungal drug resistance, and virulence of Candida auris. mSphere :e0006925
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. auris |FKS1 |FKS2 |GCN5
Chiang HS, et al. (2025) MNN45 is involved in Zcf31-mediated cell surface integrity and chitosan susceptibility in Candida albicans. Med Mycol
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |MNN45 |ZCF31
Dan K, et al. (2025) Beyond plasma membrane disruption: Novel antifungal mechanism of Neosartorya (Aspergillus) fischeri antifungal protein 2 in Candida albicans. Int J Biol Macromol :146558
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ATP1 |ENO1 |GAD1
Denning-Jannace CA, et al. (2025) Leveraging Vulnerabilities in Copper Trafficking for Synergistic Antifungal Activity. ACS Chem Biol
CGD Papers Entry  Pubmed Entry  
Other large-scale proteomic analysis, Large-scale protein detectionC. albicans |ADH1 |ATP1 |ATP2 |ATX1 |CCC2 |CRD2 |CYC1 |FET34 |GOR1 |GST2 |PDC11 |PST3 |SOD1 |SOD3 |MORE
El Khoury P, et al. (2025) Proteomic characterization of clinical Candida glabrata isolates with varying degrees of virulence and resistance to fluconazole. PLoS ONE 20(3):e0320484
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale protein detectionC. glabrata |ALG2 |ATG11 |ATG16 |CDR1 |PDR1 |SGF11
Feng J, et al. (2025) Dietary tannic acid promotes intestinal clearance of C. albicans by cross-linking hyphal chitosan. PLoS Pathog 21(10):e1013596
CGD Papers Entry  Pubmed Entry  
Large-scale protein detection, Genomic expression studyC. albicans |ALS2 |CDA2 |CHS1 |CHS2 |CHS3 |CHS5 |CHS7 |CHS8 |CHT1 |CHT2 |CHT4 |CSH1 |PGA13
Garbe E, et al. (2025) A multi-omics analysis unveils functional and regulatory links between hydroxybenzene and aromatic amino acid metabolism in Candida albicans. mSystems :e0022625
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |C4_00290C_A |STP2 |ZCF10 |ZCF25
Garg R, et al. (2025) A response to iron involving carbon metabolism in the opportunistic fungal pathogen Candida albicans. mSphere :e0004025
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |ADH2 |ALD5 |BIO2 |BIO32 |C3_04740C_A |CCP1 |CIT1 |CSM3 |CYC1 |FGR2 |GND1 |ICL1 |KGD2 |LAT1 |MORE
Gause H and Johnson AD (2025) Shared metabolism between a bacterial and fungal species that reside in the human gut. Proc Natl Acad Sci U S A 122(35):e2504785122
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |C2_10070W_A |C5_03770C_A |CIT1 |FDH1
Henry M, et al. (2025) Manganese homeostasis modulates glucan and chitin unmasking in the opportunistic yeast Candida albicans. Virulence 16(1):2569630
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |BMT3 |BMT4 |BMT6 |BMT7 |CDA2 |CEK1 |CFL2 |CFL4 |CFL5 |CHK1 |CHS2 |CHS7 |CHT4 |CRZ1 |MORE
Huang X, et al. (2025) Coordinated regulation of pH alkalinization by two transcription factors promotes fungal commensalism and pathogenicity. Nat Commun 16(1):7855
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |DAL81 |GDH2 |PCK1 |PUT1 |STP2
Jiang J, et al. (2025) Molecular landscape of the fungal plasma membrane and implications for antifungal action. Nat Commun 16(1):9125
CGD Papers Entry  Pubmed Entry  
Other large-scale proteomic analysisC. glabrata |AQY1 |FEN1 |FKS1 |FKS2 |INP53 |OSH2 |PMA1 |RHO1
Jiang Q, et al. (2025) V-ATPase contributes to the cariogenicity of Candida albicans- Streptococcus mutans biofilm. NPJ Biofilms Microbiomes 11(1):41
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |CUP5 |VMA11 |VMA4
Kaur E and Acharya V (2025) Computational prediction of Homo sapiens-Candida albicans protein-protein interactions reveal key virulence factors using dual RNA-Seq data analysis. Arch Microbiol 207(5):115
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Large-scale protein interaction, Genomic expression studyC. albicans |ERG10 |GFA1 |SOD1 |VPS4
Ke CL, et al. (2025) Mss2 shapes the virulence of Candida albicans through reactive oxygen species (ROS) and calcium signaling, independent of direct transcriptional control. Virulence 16(1):2590329
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |CR_06920W_A |MSS2 |RIM8 |SAC1 |UME6
Kim J, et al. (2025) Set1 is a critical transcriptional regulator in response to external signals in Candida albicans. Nucleic Acids Res 53(13)
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ALS3 |ECE1 |GCN5 |HWP1 |SET1
Kramara J, et al. (2025) The Candida albicans transcription factor Efg1 governs hyphal morphogenesis independently of the cAMP-protein kinase A pathway. mBio :e0291325
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |EFG1
Meza-Davalos T, et al. (2025) Filamentation Profiling Reveals Multiple Transcription Regulators Contributing to the Differences Between Candida albicans and Candida dubliniensis. Mol Microbiol
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |BCR1 |UME6
C. dubliniensis |ALS1 |ASH1 |BCR1 |BRG1 |CPH1 |DEF1 |FLO8 |HWP1 |NRG1 |PHO4 |RBF1 |RHD3 |RIM101 |TEC1 |MORE
Miyazaki T, et al. (2025) Mechanisms of multidrug resistance caused by an Ipi1 mutation in the fungal pathogen Candida glabrata. Nat Commun 16(1):1023
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. glabrata |CDR1 |CNA1 |CNB1 |IPI1 |IPI3 |PDH1 |PDR1 |PDR13 |RIX1 |SLT2 |SSB1 |SSB2
Ottaviano E, et al. (2025) Pilocarpine inhibits Candida albicans SC5314 biofilm maturation by altering lipid, sphingolipid, and protein content. Microbiol Spectr :e0298724
CGD Papers Entry  Pubmed Entry  
Large-scale protein detectionC. albicans |ALS3 |BGL2 |CHT2 |DEF1 |ERG2 |HYR1 |IHD1 |RFX2
Phan-Canh T, et al. (2025) Rapid in vitro evolution of flucytosine resistance in Candida auris. mSphere 10(4):e0097724
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. auris |B9J08_002663 |B9J08_004113 |B9J08_004475 |B9J08_004544 |FCY2 |FUR1
Phan-Canh T, et al. (2025) White-Brown switching controls phenotypic plasticity and virulence of Candida auris. Cell Rep 44(7):115976
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. auris |B9J08_004111 |B9J08_004173 |CRZ2 |EFG1 |MSN4 |RCA1 |WOR1
Qin Y, et al. (2025) Transcription factor Hap2p regulates antioxidant stress responses to maintain miconazole resistance in Candida albicans. Mycology 16(3):1386-1399
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |CDR1 |ERG11 |ERG3 |HAP2 |MDR1
Ragozzino S, et al. (2025) bueMicroRNA whole-blood profiling in hospitalized patients with candidemia identified miR-125a-5p and miR-99b-5p as potential biomarkers for Candida albicans bloodstream infection. Int J Infect Dis :108148
CGD Papers Entry  Pubmed Entry  
Genomic expression study
Rana A and Thakur A (2025) Translation regulation promotes stress adaptation in the human fungal pathogen Candida glabrata. Genetics
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. glabrata |FES1 |GCN2 |GCN4 |GLK1 |GPD1 |HXT6/7 |YBT1 |ZPR1
Shi Z, et al. (2025) Cinnamaldehyde triggers cell wall remodeling and enhances macrophage-mediated phagocytic clearance of Candida albicans. Front Cell Infect Microbiol 15:1647320
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ACE2 |ANP1 |CAS5 |CDC42 |CEK1 |CHK1 |CHS2 |CRZ2 |CST20 |ECE1 |GAL10 |GLX3 |GSC1 |GSL2 |MORE
Result Page : 1234567891011121314151617181920Next



Return to CGD
Send a Message to the CGD Curators